

- In Network Mode, all of the devices look the same. There are no Masters or Slaves
- Data flow is half-duplex ONLY
* All devices see all the data on the network
. Data sent to the transmitter (TX) of any of the interfaces, is passed out to both optical transmitters (TX)
* Data received from either optical receiver($(R X)$ is passed through to the opposite optical port's transmitter(TX), to the receiver(RX) of the RS-232, RS-485 or 20 ma port.

There is no collision detection

Set S1, position 1, to OFF (0) for Network Mode.

- There are no Masters or Slaves.

Set the shunt jumper for what interface you will be connecting to. $A=R S-232, \quad B=R S=485, \quad C=20$ ma

- For RS-232:

Set DCE/DTE shunt jumper opposite of the device that you are connected to.
In DCE mode, and jumper W3 in the A-B position, enables DTR (DTR controls CTS
In DCE mode, and jumper W3 in the B-C position, enables RTS (RTS controls CTS)
In DTE mode, jumper W3 has "NO" effect
Jumper W2 sets the delay of CTS assertion with the raising of DTR or RTS. 0 means there will be no delay. 10 gives you a 10 ms delay, and 30 is a 30 ms delay.

* For RS-485:

Set W4 and W5 for either 2-Wire or 4-Wire operation. $(A-B)=4$-Wire $\quad(B-C)=2$-Wire.
Set S 5 in the "B" position
operating in 2 -wire mode; set W 6 for the time that the driver remains enabled after the TX of the last data bit Set S1, position 3,4,5 and 6 for the appropiate biasing. OFF=No Bias and ON=Biased. In most RS-485 applications,
you would bias your RX (S1, positions 5 and 6) ON or closed.

- For 20 ma:

Set S2 and S3 for either Active or Passive TX/RX. S2 Position A = Active RX, position B = Passive RX. S3 position $A=$ Active TX, B = Passive TX
set S 5 in the "A" position

ME540A IN NETWORK MODE

