
CUSTOMER
SUPPORT

INFORMATION

Order toll-free in the U.S. 24 hours, 7 A.M. Monday to midnight Friday: 877-877-BBOX
FREE technical support, 24 hours a day, 7 days a week: Call 724-746-5500 or fax 724-746-0746
Mail order: Black Box Corporation, 1000 Park Drive, Lawrence, PA 15055-1018
Web site: www.blackbox.com • E-mail: info@blackbox.com

DECEMBER 1999
IC098C
IC099C

Personal 488 PCI Card
Personal 488 ISA Card

1

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

FEDERAL COMMUNICATIONS COMMISSION
AND

CANADIAN DEPARTMENT OF COMMUNICATIONS
RADIO FREQUENCY INTERFERENCE STATEMENTS

This equipment generates, uses, and can radiate radio frequency energy and if not
installed and used properly, that is, in strict accordance with the manufacturer’s
instructions, may cause interference to radio communication. It has been tested
and found to comply with the limits for a Class A computing device in accordance
with the specifications in Subpart J of Part 15 of FCC rules, which are designed to
provide reasonable protection against such interference when the equipment is
operated in a commercial environment. Operation of this equipment in a
residential area is likely to cause interference, in which case the user at his own
expense will be required to take whatever measures may be necessary to correct the
interference.

Changes or modifications not expressly approved by the party responsible for
compliance could void the user’s authority to operate the equipment.

This digital apparatus does not exceed the Class A limits for radio noise emission from digital
apparatus set out in the Radio Interference Regulation of Industry Canada.

Le présent appareil numérique n’émet pas de bruits radioélectriques dépassant les limites
applicables aux appareils numériques de la classe A prescrites dans le Règlement sur le
brouillage radioélectrique publié par Industrie Canada.

This equipment complies with the safety and emissions standards of the European
Community.

2

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

TRADEMARKS

The trademarks mentioned in this manual are the sole property of their owners.

3

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

CONTENTS

1. Specifications . 6

2. Introduction. 7
2.1 Description. 7
2.2 About this Manual . 7
2.3 Hardware Connection. 8
2.4 Software . 9

3. Personal 488 PCI Card . 10
3.1 What the Package Includes. 10
3.2 Installing the New Hardware . 11

4. Personal 488 ISA Card . 13
4.1 What the Package Includes. 13
4.2 Configuring the New Hardware . 13
4.3 Installing the New Hardware . 19

5. Installing the Hardware Drivers and Configuring the Software 21
5.1 Windows 95/98 Users Only . 21

5.1.1 Plug-and-Play Devices . 21
5.1.2 “Legacy” Devices . 21
5.1.3 Driver Installation/Removal for IEEE Controllers 28

5.2 Windows NT Users Only . 32
5.2.1 Plug-and-Play and “Legacy” Devices 32
5.2.2 Windows NT Service Packet 3 (SP3) Driver

Installation/Removal for IEEE Controllers. 34

6. API Command Reference. 38
6.1 Introduction. 38
6.2 Abort. 38
6.3 Arm. 39
6.4 AutoRemote. 41
6.5 Buffered . 42
6.6 BusAddress. 43
6.7 CheckListener . 44
6.8 Clear . 45
6.9 ClearList . 46
6.10 Close . 47
6.11 ControlLine . 48
6.12 DigArm. 49
6.13 DigArmSetup . 50

4

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.14 DigRead . 51
6.15 DigSetup. 52
6.16 DigWrite . 53
6.17 Disarm . 54
6.18 EnterX . 55
6.19 Error . 59
6.20 FindListener. 60
6.21 Finish . 61
6.22 GetError . 62
6.23 GetErrorList . 63
6.24 Hello. 64
6.25 KeepDevice . 65
6.26 Listen . 66
6.27 Local . 66
6.28 LocalList . 67
6.29 Lol. 68
6.30 MakeDevice . 69
6.31 MakeNewDevice . 70
6.32 MyListenAddr . 71
6.33 MyTalkAddr . 72
6.34 OnDigEvent . 73
6.35 OnDigEventVDM . 74
6.36 OnEvent . 75
6.37 OnEventVDM . 77
6.38 OpenName . 79
6.39 OutputX . 80
6.40 PassControl . 84
6.41 PPoll . 85
6.42 PPollConfig . 86
6.43 PPollDisable . 87
6.44 PPollDisableList . 88
6.45 PPollUnconfig . 88
6.46 Remote . 89
6.47 RemoteList . 90
6.48 RemoveDevice . 90
6.49 Request. 91
6.50 Reset . 92
6.51 Resume. 93
6.52 SendCmd . 94
6.53 SendData . 95
6.54 SendEoi . 96
6.55 SPoll . 96

5

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.56 SPollList . 97
6.57 Status . 99
6.58 Stop. 102
6.59 Talk. 102
6.60 Term. 103
6.61 TermQuery . 104
6.62 TimeOut. 105
6.63 TimeOutQuery . 106
6.64 Trigger . 106
6.65 TriggerList . 106
6.66 Unlisten . 108
6.67 UnTalk . 108
6.68 Wait. 109

7. Troubleshooting . 110
7.1 Radio Interference Problems . 110
7.2 IEEE 488 Bus Errors . 110
7.3 Hardware-Software Conflicts . 111
7.4 Checking Hardware and Software Settings 111

Appendix. 113
A.1 IEEE 488 Bus and Serial Bus . 113
A.2 IEEE 488 Bus Commands. 114
A.3 ASCII Codes . 115

A.3.1 ASCII Code Summary . 115
A.3.2 ASCII Code Details . 117

Abbreviations . 122

Index . 127

6

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

1. Specifications
Maximum Data-Transfer Rate—1 Mbps

Connectors—Both cards: (1) standard IEEE-488 with metric studs;
IC098C: (1) DB9 female; IC099C: (1) IEEE-488

Indicators—None

Operating Temperature—32 to 158°F (0 to 70°C)

Relative Humidity—0 to 95%

Power—From the PC

Size—IC098C: PCI-slot card; IC099C: Half-slot card

Weight—Less than 1 lb. (0.5 kg)

7

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

2. Introduction

2.1 Description
The Personal 488 Cards are IEEE 488.2 compatible and are supported by 32-bit
Driver488 software for Windows 95 or 98, and for Windows NT, named
Driver488/W95 and Driver488/WNT respectively. This manual describes two
versions of the Personal 488 Cards.

• Personal488 PCI Card (IC098C)—The IC098C interface board features plug-
and-play and 32-bit PCI local bus compatibility. Provides 1-Mbps data-transfer
rate. Offers full IEEE 488.2 support. Supported by Windows 95 or 98 and
Windows NT drivers. Provides eight channels of general-purpose digital I/O.

• Personal 488 ISA Card (IC099C)—The IC099C interface board features 16-bit
ISA-bus compatibility. Provides 1-Mbps data-transfer rate. Offers full IEEE
488.2 support. Supported by Windows 95 or 98 and Windows NT drivers.
Provides eleven interrupt lines and seven DMA channels. CE compliant.

2.2 About this Manual
This manual is divided into the following sections:

• Chapter 1, Specifications, lists the technical specifications for the Cards.

• Chapter 2, Introduction (this chapter), gives a general description of both the
interface hardware and the driver software associated with each of the Personal
488 Cards.

• Chapter 3, Personal 488 PCI Card, explains how to install and configure the
Personal 488 PCI Card.

• Chapter 4, Personal 488 ISA Card, explains how to install and configure the
Personal 488 ISA Card.

• Chapter 5, Driver 488/W95 and Driver 488/WNT, describes in more detail the
Windows driver software that comes with each of the Personal 488 Cards, and
includes instructions for configuring this software.

• Chapter 6, API Command Reference, provides descriptions for the entire API
command set, covering both versions of Driver 488—Driver488/W95 and
Driver488/WNT—and both Cards. The description format of the individual

8

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

API commands includes the command syntax, returned response, operating
mode, bus states, and an example program excerpt.

• Chapter 7, Troubleshooting, provides a reference for possible solutions to
technical problems. Before calling for technical support, refer to this chapter.

• The Appendix provides background information about the IEEE 488 bus, the
serial bus, and ASCII controls.

• The Index provides a comprehensive alphabetical listing of the main terms
and topics in this manual. Also, the Abbreviations on the last pages of this
manual provides an overall list of abbreviations, including acronyms and ASCII
control codes, as an additional reference for this manual and other related
literature.

2.3 Hardware Connection
The Personal 488 controller interface must be properly connected to a data-
acquisition device. The following diagram depicts an IEEE 488 connection from a
Personal 488 controller interface board to a data-acquisition master unit.

Figure 2-1. Typical Hardware Connection.

9

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

2.4 Software
Driver488/W95 & Driver488/WNT

This driver software integrates IEEE 488.2 control into Windows 95 or 98 and
Windows NT applications. It supports both IEEE 488 Cards, and provides true
multi-tasking device locking. Plus, it’s specifically designed for the 32-bit Windows
environment, and includes interactive control.

NOTE
For proper operation of the cards using the Windows NT operating
system, load the software BEFORE configuring and installing the
hardware. See Section 5.2.

NOTE
Throughout this manual and in the software screens, the ISA card is
sometimes called the Personal488/AT and the PCI card is sometimes
called the Personal488/PCI.

10

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

3. Personal 488 PCI Card
This chapter describes the PCI version. If you have the ISA version, skip this
chapter and go to Chapter 4.

3.1 What the Package Includes
The Personal488 PCI Card, including the IEEE 488 interface board and the
Driver488 software, is carefully inspected, both mechanically and electrically,
before shipment. After unpacking the product, carefully check for any obvious
signs of physical damage that may have occurred during shipment. If you suspect
damage, call Black Box immediately at 724-746-5500. Retain all shipping materials
in case you need to ship the unit back to Black Box.

The Personal488 PCI Card package includes:

• Personal 488 PCI Card

• (1) CD-ROM

• (1) Ribbon cable

• (1) Faceplate

• This user manual

NOTE
For proper operation of the cards using the Windows NT operating
system, load the software BEFORE configuring and installing the
hardware. See Section 5.2.

Controller Interface

The Personal 488 PCI interface board is easy to install if you’re using Windows 95
or 98—just plug-and-play. You don’t have to physically configure the hardware.
Instead, after you install your board as described in the following text, the board is
configured automatically.

11

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Figure 3-1. Personal 488 PCI Card.

3.2 Installing the New Hardware
Typical IEEE 488 interface boards are installed into expansion slots inside the PC’s
system unit. PCs have the following types of expansion slots:

• ISA expansion slots. ISA slots can either be an 8-bit slot with one card-edge
receptacle (PC-bus compatible), or a 16-bit slot with two card-edge receptacles
(AT-bus compatible). Eight-bit ISA boards may be used in either the 8-bit or
16-bit ISA slot, while 16-bit ISA boards may only be used in the 16-bit ISA slot.

• PCI expansion slots. PCI slots are 32-bit slots, used only by PCI boards.

For technical assistance, see Chapter 7, Troubleshooting, in this manual, or the
troubleshooting section in your PC’s manual. If you are still not sure of the
problem, call Black Box Technical Support at 724-746-5500.

Installing the Personal 488 PCI Card in a PCI Slot

You’ll find general instructions for installing the board here since the design of
computer cases varies. Refer to your PC’s reference manual if you need to.

12

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

1. Turn OFF the power to your computer and any other connected peripheral
devices.

• Touch a large grounded metal surface to discharge any static-electricity
buildup in your body.

• Avoid any contact with internal parts. Handle cards only by their edges.

• Disconnect the AC power before removing the cover.

2. Unplug all power cords and cables that may interfere from the back of the
computer.

3. Remove your computer’s cover by removing its mounting screws with a
screwdriver. Slide the cover OFF. If necessary, refer to your PC’s manual.

4. Your IEEE 488 controller interface must be installed in a 32-bit PCI-bus
expansion slot. Select an available PCI expansion slot and remove its slot
cover by unscrewing the holding screw and sliding it out. Save this screw for
securing the interface after it is installed.

5. To install the IEEE 488 controller interface, carefully align the card-edge
connector with the PCI slot on the motherboard, fitting the IEEE 488 port
through the rear-panel opening. Push the board down firmly, but gently,
until it is well seated.

6. Replace the slot-cover holding screw to secure the board in place.

7. Replace the computer’s cover and screws. Then reconnect all power cords
and cables to the back of the computer. If available, connect your external
data-acquisition instrument to the IEEE 488 port connector on the interface.

8. Turn on your PC. At this point, the hardware installation is complete.

13

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

4. Personal 488 ISA Card
This chapter describes the ISA version. If you have the PCI version, read Chapter 3,
then skip this chapter and go on to Chapter 5.

4.1 What the Package Includes
The Personal 488 ISA Card, including the IEEE 488 interface board and the
Driver488 software, is carefully inspected, both mechanically and electrically,
before shipment.

The package includes:

• Personal 488 ISA Card

• (1) CD-ROM

• This user manual

After unpacking all the items carefully, check for any obvious signs of physical
damage that may have occurred during shipment. If anything is missing or
damaged, call Black Box immediately at 724-746-5500. Retain all shipping materials
in case you need to ship the unit back to Black Box.

4.2 Configuring the New Hardware
Figure 4-1 shows the board layout and default DIP-switch settings for the
Personal 488 ISA Card.

NOTE
For proper operation of the cards using the Windows NT operating
system, load the software BEFORE configuring and installing the
hardware. See Section 5.2.

14

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Figure 4-1. Board Layout.

The following text will guide you through the setup of your IEEE 488 controller
interface. It includes instructions on how to verify the resource settings of ports in
your system, and how to properly configure the switches and jumpers on your
interface board.

To avoid a configuration conflict, you must first verify which I/O addresses,
IRQs, and DMAs are being used by existing ports in your system, before you
configure and install the Personal 488 ISA Card.

Step 1: Verifying/Recording the Current System Settings

The Windows Control Panel enables you to easily determine and configure the
I/O addresses, IRQ setting, and DMA settings in your system for proper operation.
Perform the following steps to verify your system settings.

1. Open the Control Panel window from the Start > Settings menu, click on the
System icon, and select the Device Manager tab. Under the line “Ports (COM
& LPT),” look for a list of used ports. For each port, highlight the port and
click on the Properties button.

2. Properties already being used in the system are displayed under the Resources
tab. Values NOT listed are available.

15

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

• For each listed port, record which Input/Output (I/O) address, if any, is
being used.

• For each listed port, record which Interrupt Request (IRQ) value, if any, is
being used.

• For each listed port, record which Direct Memory Access (DMA) value, if any,
is being used.

3. Exit Windows and turn the system OFF.

The I/O base address, IRQ, and DMA settings are switch/jumper selectable via
the following locations on the Personal 488 ISA Card: One 2-microswitch DIP
switch labeled SW1, one 4-microswitch DIP switch labeled SW2, two 14-pin headers
labeled DACK and DRQ, and one 22-pin header labeled IRQ. The DIP-switch
settings and the way you arrange the jumpers on the headers set the hardware
configuration.

For the next steps, make sure that the I/O address, IRQ, and DMA set on the
interface board are different from any existing ports in your system. A conflict
results when two I/O addresses, IRQs, or DMAs are the same. (As the exception,
additional Personal 488 ISA Cards may share the same IRQ and DMA values.)

Step 2: Configuring the Interface I/O Base Address

Figure 4-2. Personal 488 ISA Card I/O Base Address Selections.

16

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

1. The factory default I/O base address is 02E1. If this creates a conflict, reset
SW1 according to the figure and following table. The register addresses will
be automatically relocated at fixed offsets from the base address.

2. If you change the default, record the new Input/Output (I/O) address being
used.

Table 4-1. Selected I/O Base Address.

Selected I/O Base Address Register
02E1 22E1 42E1 62E1

Automatic Offset Addresses Read Register Write Register
02E1 22E1 42E1 62E1 Data In Data Out

06E1 26E1 46E1 62E1 Interrupt Status 1 Interrupt Mask 1

0AE1 2AE1 4AE1 6AE1 Interrupt Status 2 Interrupt Mask 2

0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode

12E1 32E1 52E1 72E1 Address Status Address Mode

16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode

1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1

1EE1 3EE1 5EE1 7EE1 Address 1 End of String

The I/O base address sets the addresses used by the computer to communicate
with the Personal 488 ISA Card hardware on the board. The address is normally
specified in hexadecimal and can be 02E1, 22E1, 42E1, or 62E1. The registers of
the IOT7210 IEEE 488 controller chip and other auxiliary registers are then
located at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four Personal
488 ISA Cards. To do so, you must arrange the interface configurations to avoid
conflict among themselves. No two Cards may have the same I/O address, but they
may, and usually should, have the same DMA channel and interrupt level.

17

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Step 3: Configuring the Personal 488 ISA Card Interface Interrupt (IRQ)

Figure 4-3. Configuring the Personal 488 ISA Card Interface Interrupt
(IRQ).

1. The factory-default Interrupt (IRQ) is 7. If this creates a conflict, reset SW2
and jumper IRQ according to Figure 4-3. The switch and jumper settings
must both indicate the same interrupt level to operate correctly with
interrupts.

18

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

2. If you change the default, record the new Interrupt (IRQ) you’re using.

You can set the Personal 488 ISA Card to interrupt the PC when certain
hardware conditions occur. You can set the main board interrupt to IRQ level 3
through 7, 9 through 12, 14, or 15. Interrupts 10 through 15 are only available in a
16-bit slot on an AT-class machine. Interrupt 9 becomes synonymous with Interrupt
2 when used in a PC/XT bus.

Several Personal 488 ISA Cards may share the selected interrupt in the same AT
chassis. The Card adheres to the AT-style interrupt-sharing conventions. When the
Card requires service, the IRQ jumper determines which PC interrupt level is
triggered. When an interrupt occurs, the interrupting device must be reset by
writing to an I/O address that is different for each interrupt level. The switch
settings may determine the I/O address to which the Card’s interrupt-rearm
circuitry responds.

Step 4: Configuring the Personal 488 ISA Card DMA Channel

Figure 4-4. Personal 488 ISA Card DMA Channel Selections.

1. The factory-default DMA channel is 5. If this creates a conflict, reset jumpers
DACK and DRQ according to Figure 4-4.

2. If you change the default, record the new DMA channel being used.

Direct Memory Access (DMA) is a high-speed method of transferring data from
or to a peripheral, such as a digitizing oscilloscope, to or from the PC’s memory.

19

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The AT class machine has seven DMA channels. Channels 0 to 3 (8-bit), 5, 6, and 7
(16-bit) are available only in a 16-bit slot on an AT class machine. Channel 2 is
usually used by the floppy-disk controller, and is unavailable. Channel 3 is often
used by the hard-disk controller in PCs, XTs, and the PS/2 with the ISA bus, but is
usually not used in ATs. Channels 5 to 7 are 16-bit DMA channels and offer the
highest throughput (up to 1 Megabyte per second). Channels 0 to 3 are 8-bit DMA
channels and although slower, they offer compatibility with existing applications
that only used 8-bit DMA channels. Under some rare conditions, high-speed
transfers on DMA Channel 1 can demand so much of the available bus bandwidth
that a floppy controller cannot access the channel simultaneously.

4.3 Installing the New Hardware
Typical IEEE 488 interface boards are installed into expansion slots inside the PC’s
system unit. Typical PCs have the following types of expansion slots:

• ISA expansion slots. ISA slots can either be an 8-bit slot with one card-edge
receptacle (PC-bus compatible), or a 16-bit slot with two card-edge receptacles
(AT-bus compatible). Eight-bit ISA boards may be used in either the 8-bit or
16-bit ISA slot, while 16-bit ISA boards may only be used in the 16-bit ISA slot.

• PCI expansion slots. PCI slots are 32-bit slots, used only by PCI boards.

For technical assistance, see Chapter 7, Troubleshooting, in this manual, or the
troubleshooting section in your PC’s manual. If you are still not sure of the
problem, contact the dealer or manufacturer of your interface board or PC.

NOTE
For proper operation of the cards using the Windows NT operating
system, load the software BEFORE configuring and installing the
hardware. See Section 5.2.

Installing the Personal 488 ISA Card into an ISA Slot

General instructions for installing the board are given since the design of
computer cases varies. Refer to your PC’s reference manual whenever in doubt.

1. Turn OFF the power to your computer and any other connected peripheral
devices. Follow these precautions for static-electricity discharge:

• Touch a large grounded metal surface to discharge any static-electricity
buildup in your body.

20

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

• Avoid any contact with internal parts. Handle cards only by their edges.

• Disconnect the AC power before removing the cover.

2. Unplug all power cords and cables that may interfere from the back of the
computer.

3. Remove your computer’s cover by removing its mounting screws with a
screwdriver. Slide the cover OFF. If necessary, refer to your PC’s manual.

4. Your Personal 488 ISA Card must be installed in an 8-bit ISA-bus expansion
slot. Select an available ISA expansion slot and remove its slot cover by
unscrewing the holding screw and sliding it out. Save this screw for securing
the Card after it is installed.

5. To install the Personal 488 ISA Card, carefully align the card-edge connector
with the ISA slot on the motherboard, fitting the IEEE 488 port through the
rear-panel opening. Push the board down firmly, but gently, until it is well
seated.

6. Replace the cover slot holding screw to secure the Card in place.

7. Replace the computer’s cover and screws. Then reconnect all power cords
and cables to the back of the computer. If available, connect your external
data-acquisition instrument to the IEEE 488 port connector on the interface.

8. Turn on your PC.

At this point, the hardware installation is complete.

21

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

5. Installing the Hardware Drivers
and Configuring the Software

NOTE
Throughout this manual and in the software screens, the ISA card is
sometimes called the Personal488/AT and the PCI card is sometimes
called the Personal488/PCI.

5.1 Windows 95 or 98 Users Only

NOTE
If you are using Windows NT, go to Section 5.2.

5.1.1 PCI VERSION

If the operating system you are using is Windows 95 or 98, follow these steps to
install a Personal 488 PCI Card. If the operating system you are using is Windows
NT, go to Section 5.2.

1. Remove power from the PC.

2. Physically install the device into a 32-bit expansion slot as described in
Chapter 3 or 4.

3. Return power to the PC. After the computer powers up and detects the new
device, you should see a screen prompt asking for a CD-ROM.

4. Place CD-ROM in the CD-ROM drive.

5. Follow the screen prompts.

This completes the plug-and-play device install procedure for Windows 95 and
Windows 98 users.

5.1.2 ISA VERSION

NOTE
If you are using Windows NT, go to Section 5.2.

If you are using Windows 95 or 98, follow these steps to install a Personal 488 ISA
Card.

1. Remove power from the PC.

22

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

2. Physically configure and install the device as described in Chapter 3 or 4.

3. Return power to the PC.

4. Access the Add New Hardware dialog box by selecting the Windows Start
button and navigating as follows:

Start Settings Control Panel Add New Hardware

Figure 5-1. Navigating to Add New Hardware.

NOTE
The following screen images have been taken from Windows 95. The
Windows 98 version screen images are similar.

5. The “Add New Hardware Wizard” displays an introductory message and
prompts you to click Next.

NOTE
After you click Next, Windows 98 will automatically search for installed
devices.

23

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Figure 5-2. Add New Hardware Wizard.

6. Select “No” when asked, “Do you want Windows to search for your new
hardware?” Then click Next.

24

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Figure 5-3. Selecting the Type of Hardware to Install.

7. Choose Other Devices from the list of hardware types.

8. When the Manufacturer/Models dialog box appears:

Select Unknown Devices for Manufacturer.

Select Unsupported Device for Models.

Then click the Have Disk button.

Figure 5-4. Selecting the Manufacturer/Model.

25

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

9. Insert the CD-ROM into the appropriate drive, click Browse, and select the
CD’s root directory. Windows will now look for an “inf” file.

The file “iotech.inf” will now appear in the text field of the Open window.
Click OK.

10. Windows will now display a list of devices to install. Select the specific
Personal488 device to be installed. You should see the device in the Wizard’s
list of models.

After making the selection, click Next.

Figure 5-5. Selecting the Device You Wish to Install.

11. Check the default resource settings. If the settings do not match your board
configuration (for example, if you changed a default jumper setting) you will
need to use the Device Manager to enter the changes.

Regardless of whether or not you need to make settings changes, click Next.
The disk file for the device is copied into the PC.

Follow the screen prompts. When prompted, restart the computer.

If you do not need to change settings, the installation is complete. If you do
need to make setting changes, continue with Step 12.

Personal 488/AT

26

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Figure 5-6. Resources Settings screen.

NOTE
Steps 12 through 14 pertain to making settings changes for resource
types. Perform these steps only if you need to change your device
settings.

12. If you need to make settings changes, first access the Device Manager. Do this
by beginning with the Desktop Start button.

Start Settings Control Panel System Device Manager

Figure 5-7. Accessing Device Manager.
13. In the Device Manager, select IEEE 488.2 Controllers, then the specific

device. The example shows Personal488/AT (the Personal 488 ISA Card)

27

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

selected. The Personal 488 PCI card is called Personal 488/PCI.

After selecting the device, click the Properties button.

Figure 5-8. Device Manager screen.

When the device properties window opens, select the Resources tab. A screen
similar to the one shown in Figure 5-9 should appear.

Highlight the first setting you wish to change.

Click the Change Setting button. An edit window appears for the selected
setting. Follow the screen prompts.

After you have made all needed changes, click OK.

You will be prompted to restart the computer, to put the new settings into
effect.

Personal 488/AT

28

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Figure 5-9. Change Setting screen.

This completes the installation procedure for the ISA version in Windows 95
and Windows 98.

5.1.3 WINDOWS 95/98 DRIVER INSTALLATION/REMOVAL FOR IEEE CONTROLLERS

This procedure assumes that you have the most recent revision of the
driver/software. You must remove any previous versions of drivers and applicable
software.

Removal

Follow the removal steps only if software is already installed or if you made a
mistake during installation.

First, uninstall software using Add/Remove Programs in the control panel. The
keywords of the program name will be “Personal IEEE.” Highlight and remove.

Second, remove the IEEE 488-related .inf file located in “C:\Windows\Inf\Other”
or “C:\Windows\Inf” folder.

29

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Next, remove IEEE Controller hardware by entering the System device manager
located in the control panel. Highlight and remove the specific controller.

Installation

For all 488 controllers, do not install the controller at this time.

1. Go to Control Panel, select Add New Hardware, and click Next. Windows will
then ask if you want Windows to find the hardware.

2. Select No. An item window will then be displayed. If there is an IEEE 488.2
controller item in the list, highlight and click next. If there is no IEEE 488
item, highlight “?Other Devices” and click Next.

3. Click Have Disk. Windows will default to the A drive.

4. Browse to the CD’s root directory. This is where the iotech.inf file is located.
Make sure this file is highlighted and click OK, then OK again.

5. Select the relevant controller and click Next. (For the ISA version, note the
hardware settings recommended by Windows.)

6. Click Next, then Finish.

7. Select Add/Remove Programs, then Install.

8. Browse to the floppy drive and select the appropriate controller folder,
W95_98\SDK\Disk 1, and finally Setup.exe.

9. Click Finish and agree to all defaults.

10. When the installation is complete, close the newly created program group,
and an option to configure will be displayed. Use this option only if hardware
settings need to be changed. You can change hardware settings by either
using the System Resources button in the IEEE applet or by clicking System,
Device Manager, then highlighting the device and clicking Properties,
Resources, and Change Settings.

11. Power down the computer. For the ISA version, install the configured card,
power up the computer, and proceed to the Verification process. For plug
and play, simply install the card. Windows will automatically detect and
associate the previously installed software.

30

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Installing the Interface Software Support Files

1. In the Browse window, double click the appropriate product folder and
operating system. The installation program SETUP.EXE will be in the
subfolder named SDK under the Windows 95/98 operating system folder.

2. Locate SETUP.EXE and click FINISH.

3. The Installation program will step you through various options on installing
these software support files.

NOTE
These files are NOT required to get the hardware to work properly, but
we recommend using them if you plan to do any software development
or if you need Help files.

4. Any or all of the installed software support files may be removed by going to
the Control Panel from the Start > Settings menu, double-clicking on the
Add/Remove Programs icon, then selecting “Personal IEEE 488 v 2.0,” and
clicking the Add/Remove... button.

At this point, the installation of software support files is complete.

Verification

1a. Run wintest.exe. “IEEE0(-1)” should be in the device handle box. Hit
“OpenName” (immediately to the right of the device handle box). Does this
open a new window with driver information? If yes, go to Step 2. If no, go to
Step 1b.

b. Check to make sure that the driver has been installed. (It’s on a separate disk
for the Windows 95 or 98 environment.)

c. Check the address and interrupt (interrupt is set with switches and jumpers
on ISA cards). On the card, make sure these settings match the settings in the
control panel.

d. Check the BIOS to see if the interrupt is reserved for an ISA card.

e. Check to make sure that it is a Black Box card…look for a part number
etched in the solder side of the board. It should look like a phone number.

31

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

f. Check for conflicts with older revisions of the driver. (Check autoexec.bat for
a call to the old .DRV version, also the path for different installation or a
wrong path.) A successful test in steps 1 through 6 means that the card is an
IOTech card, the address is OK. Also, it’s not colliding with any of the other
drivers, and the interrupt is probably OK.

2. Make sure there is a device on the bus, “Query→CheckListener.” Fill in the
primary parameter with the address of the peripheral. This will return a 0, 1,
or -1.

If it returns 1, CheckListener was successful. Go to step 3.

If it returns 0 immediately, the device did not respond. Check the cabling,
and the address of the peripheral.

If it returns 0 after the time-out period or returns -1, this is almost always an
interrupt conflict. Check BIOS again, move the device to a “free” interrupt,
and try again.

3. Go to “Device→MakeNew Device.” Fill in the primary parameter with the

address of the peripheral. There is no reason for this command to fail: it

should return a number other than -1.

4a. Go to “Data Transfer→Output Commands→Output.” Enter a short
command to the peripheral, preferably one that can be observed on the
device. Was the Bytecount correct? Was the command understood? If yes, go
to step 5a. If no, go to step 4b.

b. Check the DMA for conflicts, or disable it.

c. Verify that the terminators match the peripheral settings.

5a. Write a message that gives a response back to the controller (take a reading,
or check a setting). Then read that response with “Data Transfer→Output
Commands→Enter.” Did you get anything? Does it make sense?

b. If “Yes, yes->” go to step 6a.

c. If “Yes, no->” make sure that the DMA is disabled, and check the terminators.

d. If “No, no->” make sure a valid command was sent. Check the terminators.

32

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6a. Engage the DMA, and send a long command (about 9 bytes or longer) or
request a long response (same 9-byte threshold). Did it work? If yes, you are
done. If no, go to step b.

b. Change the DMA channel, and see if you need to reserve this resource in
BIOS. Alternatively, you can leave the DMA disabled; this only costs some
speed performance on longer transfers.

5.2 Windows NT Users Only

5.2.1 PLUG AND PLAY AND “LEGACY” DEVICES

NOTE
This section is for users of Windows NT. If you’re using Windows 95/98,
see Section 5.1.

1. Remove power from the PC.

2. Physically configure and install the device as described in Chapter 3 or 4.

3. Return power to the PC.

4. Insert the CD-ROM into your CD drive. The CD contains a folder for all of
the IEEE488 interfaces. Located under each interface folder are the
operating system folders. Using Windows Explorer, browse the \WNT\Disk1
folder for Setup.exe.

5. Run Setup.exe.

6. Follow the on-screen prompts and allow Windows NT to complete the install.

33

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Figure 5-10. Driver Setup screen.

Figure 5-11. Selecting the Card.

34

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

7. In Windows NT, after selecting the device from the IEEE 488 Properties
window, click the Properties button to access the device properties window.
Then click the System Resources button to make changes to I/O, IRQ, and
DMA settings as applicable. Figure 5-11 shows selection of an AT488 type
device designated as IEEE0.

Figure 5-12 represents the Windows NT Change System Resources dialog box,
and the button used to access it.

Figure 5-12. Windows NT Change System Resources screen.

8. When prompted, restart your computer to put the new settings into effect.

This completes the install procedure for users of Windows NT.

5.2.2 WINDOWS NT SERVICE PACKET 3 (SP3) DRIVER INSTALLATION/REMOVAL FOR IEEE
CONTROLLERS

This procedure assumes that you have the most recent revision of the
driver/software. You must remove any previous versions of drivers and applicable
software before you begin.

Removal

Perform the removal steps only if you have a previous installation or if you made a
mistake during installation.

35

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

1. Uninstall the software using Add/Remove Programs in the control panel. The
keywords of the program name will be “Personal IEEE.”

2. Highlight and remove.

3. Answer yes to uninstall shared files if queried.

4. Shut down and Restart.

Installation

For all 488 controllers: Do NOT install the controller at this time. Follow these
steps:

1. Go to Control Panel, select Add/Remove Programs, click Install, and Next.
Windows NT will then default to the A drive.

2. Browse to the CD drive and select the appropriate controller folder,
\WNT\Disk 1, and finally Setup.exe. The full path of the installation program
is now displayed in the text box.

3. Click Finish and then Next. The Select Components window is now displayed.

4. Select the appropriate controller.

5. Click Next, and accept defaults.

6. When the installation is complete, close the newly created program group,
and click Finish. (For the ISA version, use this IEEE 488 properties window to
enter the system resources and change hardware settings as needed.)

NOTE
We recommend that you disable the DMA until you establish a non-
conflicting IRQ.

7. Power down the computer.

8. Install the configured card and power up the computer. Proceed to the
verification process.

NOTE
You might need to repeat the power down and settings routine until
there is no conflict. Remember that not only the DIP switches and
jumpers, but also the system resources, must also reflect the new
settings.

36

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Verification

1a. Run wintest.exe. “IEEE0 (-1)” should be in the device handle box.

b. Hit “OpenName” (immediately to the right of the device handle box. Does
this open a new window with driver information? If yes, go to step 2.

c. If no, check to make sure that the driver has been installed. (It’s on a separate
disk for the Windows 95 or 98 environment.)

d. Check the address and interrupt (interrupt is set with switches and jumpers
on ISA cards) on the card. Make sure that they match the settings in the
control panel.

e. Check BIOS to see if the interrupt is reserved for an ISA card.

f. Check to make sure that it is an IOtech card. Look for a part number etched
in the solder side of the board. It should look like a phone number.

g. Check for conflicts with older revisions of the driver. (Check autoexec.bat for
a call to the old .DRV version, also the path for a different installation.)

A successful test in step 1 means we know it is an IOtech card, the address is OK.
Also, it is not colliding with any of our other drivers, and the interrupt is probably
OK.

2a. Make sure that there is a device on the bus, “Query→CheckListener.”

b. Fill in the primary parameter with the address of the peripheral. This will
return a 0, 1, or -1.

If it returns 1, CheckListener was successful.

If it returns 0 immediately, the device did not respond. Check the cabling and
address of the peripheral.

If it returns 0 (after the time-out period), or returns 1, this is almost always an
interrupt conflict. Check BIOS again, move the device to a different “free”
interrupt and try again.

3. Go to “Device→MakeNewDevice.” Fill in the primary parameter with the
address of the peripheral. There is no reason for this command to fail; it
should return a number other than -1.

4. Go to “DataTransfer→Output command→Output.” Enter a short command
to the peripheral, preferably one that you can observe on the device. Was the

37

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Bytecount correct? Was the command understood? If yes, go to step 5. If no,
check the DMA for conflicts, or disable it. Verify that the terminators match
the peripheral settings.

5. Write a message that gives a response back to the controller (take a reading,
or check a setting). Then read that response with: “DataTransfer→Output
commands→Enter.” Did you get anything? Does it make sense?

a. If “Yes, yes->” go to step 6.

b. If “Yes, no->” make sure that the DMA is disabled, and check the terminators.

c. If “No, no->” make sure a valid command was sent, and check the terminators.

6a. Engage the DMA, and send a long command (about 9 bytes or longer) or
request a long response (same as 9-byte threshold). Did it work? If yes, you are
done. If no, go to step b.

b. Change the DMA channel, and see if you need to reserve this resource in
BIOS. Alternatively, you can leave the DMA disabled; this only costs some
speed performance on longer transfers.

38

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6. API Command Reference

6.1 Introduction
This chapter contains the API command reference for Driver488/W95 and
Driver488/WNT, using the C language. The following 67 commands are
presented in alphabetical order for ease of use.

6.2 Abort

Syntax INT WINAPI Abort(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware

interface or an external device. If devHandle refers to an

external device, the Abort command will act on the

hardware interface to which the external device is

attached.

Returns -1 if error

Mode SC or *SC(CA

Bus States IFC, *IFC (if SC)

ATN(MTA (if *SC(CA)

Example errorflag = Abort(ieee);

See Also MyTalkAddr, Talk, UnTalk

As the System Controller (SC), whether Driver488 is the Active Controller or
not, the Abort command causes the Interface Clear (IFC) bus management line to
be asserted for at least 500 microseconds. By asserting IFC, Driver488 regains
control of the bus even if one of the devices has locked it up during a data transfer.
Asserting IFC also makes Driver488 the Active Controller. If a non-System-
Controller was the Active Controller, it is forced to relinquish control to Driver488.
Abort forces all IEEE 488 device interfaces into a quiescent state.

39

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

If Driver488 is a non-System-Controller in the Active Controller state (*SC(CA),
it asserts Attention (ATN), which stops any bus transactions, and then sends its My
Talk Address (MTA) to “Untalk” any other Talkers on the bus. It does not (and
cannot) assert IFC.

6.3 Arm

Syntax INT WINAPI Arm(DevHandleT devHandle, ArmCondT

condition); devHandle refers to either an IEEE 488

hardware interface or an external device. If devHandle

refers to an external device, the Arm command acts on

the hardware interface to which the external device is

attached. condition is one of the following: acError,

acSRQ, acPeripheral, acController, acTrigger, acClear,

acTalk, acListen, acIdle, acByteIn, acByteOut, or

acChange.

Returns -1 if DevHandleT is an illegal device or interface;

otherwise, the current state of the event trigger flag

Mode Any

Bus States None

Example errorflag = Arm(ieee, acSRQ|acTrigger|acChange);

See Also Disarm, OnEvent

The Arm command allows Driver488 to signal to the user-specified function
when one or more of the specified conditions occurs. Arm sets a flag for each
implementation of the conditions which are user-indicated. Arm conditions may
be combined using the bitwise OR operator.

40

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The following Arm conditions are supported:

Condition Description
acSRQ The Service Request bus line is asserted.

acPeripheral An addressed status change has occurred, and the

interface is a Peripheral.

acController An addressed status change has occurred, and the

interface is an Active Controller.

acTrigger The interface has received a device Trigger command.

acClear The interface has received a device Clear command.

acTalk An addressed status change has occurred, and the

interface is a Talker.

acListen An addressed status change has occurred, and the

interface is a Listener.

acIdle An addressed status change has occurred, and the

interface is neither Talker nor Listener.

acByteIn The interface has received a data byte.

acByteOut The interface has been configured to output a data byte.

acError A Driver488 error has occurred.

acChange The interface has changed its addressed status. Its

Controller/Peripheral or Talker/Listener/Idle states has

changed.

41

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.4 AutoRemote

Syntax INT WINAPI AutoRemote(DevHandleT devHandle, BOOL

flag);

devHandle refers to either an IEEE 488 hardware

interface or an external device. If devHandle refers to an

external device, the AutoRemote command acts on the

hardware interface to which the external device is

attached.

flag may be either OFF or ON

Returns -1 if DevHandleT is an illegal device or interface;

otherwise, the previous state is returned

Mode SC

Bus States None

Example errorcode = AutoRemote(ieee,ON);

See Also Local, Remote, EnterX, OutputX

The AutoRemote command enables or disables the automatic assertion of the
Remote Enable (REN) line by Output. When AutoRemote is enabled, Output
automatically asserts REN before transferring any data. When AutoRemote is
disabled, there is no change to the REN line. AutoRemote is on by default.

42

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.5 Buffered
Driver488/W95 only

Syntax LONG WINAPI Buffered(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an

external device. If devHandle refers to an external

device, the Buffered command acts on the hardware

interface to which the external device is attached.

Returns -1 if error; otherwise long integer from 0 to

1,048,575(220-1)

Mode Any

Bus States None

Example result = Buffered(ieee);

printf(“%ld bytes were received.”,result);

See Also EnterX, OutputX

The Buffered command returns the number of characters transferred by the
latest Enter, Output, SendData, or SendEoi command. If an asynchronous transfer
is in progress, the result is the number of characters that have been transferred at
the moment the command is issued. This command is most often used after a
counted Enter, EnterN, EnterNMore, etc., to determine if the full number of
characters was received, or if the transfer terminated upon detection of term. It is
also used to find out how many characters have currently been sent during an
asynchronous DMA transfer.

43

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.6 BusAddress

Syntax INT WINAPI BusAddress (DevHandleT devHandle, BYTE

primary, BYTE secondary).

devHandle refers to either an IEEE 488 hardware interface or an

external device.

primary is the IEEE 488 bus primary address of the

specified device.

secondary is the IEEE 488 bus secondary address of the

specified device. If the specified device is an IEEE 488

hardware interface, this value must be -1, since there are

no secondary addresses for the IEEE 488 hardware

interface. For no secondary address, a -1 must be

specified.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = BusAddress(dmm,14,0);

See Also MakeDevice

The BusAddress command sets the IEEE 488 bus address of the IEEE 488
hardware interface or an external device. Every IEEE 488 bus device has an
address that must be unique within any single IEEE 488 bus system. The default
IEEE 488 bus address for Driver488 is 21, but this may be changed if it conflicts
with some other device.

44

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.7 CheckListener

Syntax INT WINAPI CheckListener(DevHandleT devHandle,

BYTE primary, BYTE secondary);

devHandle refers to either an IEEE 488 hardware

interface or an external device. If devHandle refers to an

external device, the CheckListener command acts on the

hardware interface to which the external device is

attached.

primary is the primary bus address to check for a Listener

(00 to 30)

secondary is the secondary bus address to check for a

Listener (00 to 31). For no secondary address, a -1 must

be specified

Returns -1 if error; otherwise it returns a 1 if a listener was found

at the specified address, or a 0 if a listener was not found

at the specified address.

Mode CA

Bus States ATN(UNL, LAG, (check for NDAC asserted)

Example result = CheckListener(ieee,15,4);

if (result == 1)

{

printf(“Device found at specified address.\n”);

}

if (result == 0)

{

printf(“Device not found at specified address.\n”);

}

See Also FindListener, BusAddress

45

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The CheckListener command checks for the existence of a device on the IEEE
488 bus at the specified address.

6.8 Clear

Syntax INT WINAPI Clear(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware

interface or an external device. If devHandle refers to a

hardware interface, then a Device Clear (DCL) is sent. If

devHandle refers to an external device, a Selected

Device Clear (SDC) is sent.

Returns -1 if error

Mode CA

Bus States ATN(DCL (all devices)

ATN(UNL, MTA, LAG, SDC (selected device)

Examples errorcode = Clear(ieee); Sends the Device Clear (DCL)

command to the IEEE interface board.

errorcode = Clear(wave); Sends the Selected Device

Clear (SDC) command to the WAVE device.

errorcode = Clear(dmm); Sends the Selected Device

Clear (SDC) command to the DMM device.

See Also Reset, ClearList

The Clear command causes the Device Clear (DCL) bus command to be issued
to an interface or a Selected Device Clear (SDC) command to be issued to an
external device. IEEE 488 bus devices that receive a Device Clear or Selected
Device Clear command normally reset to their power-on state.

46

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.9 ClearList

Syntax INT WINAPI ClearList(DevHandlePT dhList);

dhList is a pointer to a list of device handles that refer to

external devices. If a hardware interface is in the list,

DCL is sent instead of SDC.

Returns -1 if error

Mode CA

Bus States ATN(DCL (all devices)

ATN(UNL, MTA, LAG, SDC (selected device)

Example deviceList[0] = wave;

deviceList[1] = scope;

deviceList[2] = dmm;

deviceList[3] = NODEVICE;

errorcode = ClearList(deviceList);

Sends the Selected Device Clear (SDC) command to a

list of devices.

See Also Clear, Reset

The ClearList command causes the Selected Device Clear (SDC) command to
be issued to a list of external devices. IEEE 488 bus devices that receive a Selected
Device Clear command normally reset to their power-on state.

47

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.10 Close

Syntax INT WINAPI Close(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an

external device.

Returns -1 if error

Mode Any

Bus States Completion of any pending I/O activities

Example errorcode = Close(wave);

See Also OpenName, MakeDevice, Wait

The Close command waits for I/O to complete, flushes any buffers associated
with the device that is being closed, and then invalidates the handle associated with
the device.

48

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.11 ControlLine

Syntax INT WINAPI ControlLine(DevHandleT devHandle);

ControlLine returns a bit mapped number.

devHandle refers to the I/O adapter. If devHandle refers to an

external device, the ControlLine command acts on the hardware

interface to which the external device is attached.

Returns -1 if error; otherwise, a bit map of the current state of the IEEE 488

interface. Under 32-bit Driver488 software, serial interfaces are

not supported.

Mode Any

Bus States None

Example result = ControlLine(ieee);

printf(“The response is %X\n”,result);

See Also TimeOut

The ControlLine command may be used only on IEEE 488 devices. Under
32-bit Driver488 software, serial interfaces are not supported. This command
returns the status of the IEEE 488 bus control lines as an 8-bit unsigned value (bits
2 and 1 are reserved for future use), as shown below:

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
EOI SRQ NRFD NDAC DAV ATN 0 0

49

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.12 DigArm
PCI Card only

Syntax INT WINAPI DigArm(DevHandleT devHandle, BOOL

bArm);

devHandle refers to an interface handle.

bArm refers to a value that arms or disarms event

generation. TRUE = Arm, FALSE = Disarm.

Returns -1 if neither nibble is set for input, or other error

Mode Any

Bus States None

Example DigArm(devHandle, TRUE); Arms digital input event

generation.

See Also DigArmSetup, DigSetup, OnDigEvent, OnDigEventVDM

The DigArm command arms or disarms the event-generation due to a digital
I/O port match condition. The caller should configure the digital I/O port, the
event-callback mechanism, and the match condition prior to arming the event
generation. The following code snippet illustrates this sequence:

DigSetup(devHandle, FALSE, FALSE); // Configure both nibbles for input.
OnDigEventVDM(devHandle, MyFunc, 0); // On event, call function MyFunc.
DigArmSetup(devHandle, 0x0A5); // Trigger when inputs equals 0xA5.
DigArm(devHandle, TRUE); // Enable event generation.

Event generation is automatically disarmed when an event is triggered. The
event-generation configuration, however, remains intact, so event generation can
be re-armed just by calling DigArm. The other steps shown in the above code
snippet do not need to be repeated unless the event configuration is to be
changed.

Event generation may be disarmed (bArm = FALSE) at any time.

50

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

NOTES
1. This function does not configure the digital I/O port for input. The
caller must use DigSetup to configure the port for input before
performing arming event generation. If neither nibble is configured for
input, the function returns -1 and sets the error code to
IOT_BAD_VALUE2.

2. Event generation may be re-armed from within the event handler to
provide continuous detection of match condition events. However, this
is not guaranteed to catch every event if the digital input values are
rapidly changing.

3. Any digital I/O port bits configured for output are treated as “don’t
care” bits for the purposes of event generation. In other words, it is
valid to arm an event when only one nibble of the port is configured for
input. In this case, the other nibble is ignored when detecting the match
condition.

6.13 DigArmSetup
PCI Card only

Syntax INT WINAPI DigArmSetup(DevHandleT devHandle,

BYTE byMatchValue);

devHandle refers to an interface handle.

byMatchValue refers to a value that is compared against

the digital I/O inputs.

Returns -1 if error

Mode Any

Bus States None

Example DigArmSetup(devHandle, 0xA5); Sets the match value to

0xA5.

See Also DigArm, DigSetup

51

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The DigArmSetup command sets the match condition value. This value will be
compared against the digital I/O port inputs to detect when an event occurs. The
event must be armed (via DigArm) for event notification to take place.

The comparison operation depends on the current digital-port configuration.
If both nibbles are configured for input, then the match value is compared to the
entire byte value of the digital port. If only one of the nibbles is configured for
input, then the value is compared against just that nibble. If no nibbles are
configured for input, then the match value is ignored. The DigArm function will
not allow event generation to be armed unless at least one of the nibbles is
configured for input.

6.14 DigRead
PCI Card only

Syntax INT WINAPI DigRead(DevHandleT devHandle);

devHandle refers to an interface handle.

Returns -1 if no part of the port is configured for input, or other

error

otherwise, integer between 0 and 255 if the entire digital

I/O port is configured for input; or integer between 0 and

15 if only one nibble (either low or high) is configured for

input

Mode Any

Bus States None

Example int i = DigRead(devHandle); Returns the current value of

the digital I/O port per the current configuration.

See Also DigSetup, DigWrite

The DigRead command reads the current value of the digital IO port per the
input/output configuration of the port. If the entire port is configured for input,
a value between 0 and 255 is returned. If either the upper or lower nibble is

52

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

configured for input, and the other for output, a value between 0 and 15 is
returned.

NOTE
This function does not configure the digital I/O port for input. The caller
must use DigSetup to configure the port for input before performing any
reads. If neither nibble is configured for input the function returns -1
and sets the error code to IOT_BAD_VALUE2.

6.15 DigSetup
PCI Card only

Syntax INT WINAPI DigSetup(DevHandleT devHandle, BOOL

bLowOut, BOOL bHighOut);

devHandle refers to an interface handle.

bLowOut refers to the lower nibble setup. TRUE = output,

FALSE = input.

bHighOut refers to the upper nibble setup. TRUE =

output, FALSE = input.

Returns -1 if error

Mode Any

Bus States None

Examples DigSetup(devHandle, TRUE , TRUE); All 8 bits output.

DigSetup(devHandle, FALSE, TRUE); Lower 4 bits input,

upper 4 output.

DigSetup(devHandle, TRUE , FALSE); Lower 4 bits

output, upper 4 input.

DigSetup(devHandle, FALSE, FALSE); All 8 bits input.

See Also DigRead, DigWrite

53

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The DigSetup command configures the digital I/O port for input and output
on a per-nibble basis. Each of the two nibbles can be set for input or output. All
combinations are supported. Once DigSetup is called, the configuration of the
digital I/O port does not change until the next call to DigSetup. The port may be
read and written to many times without affecting the port setup.

NOTE
The digital I/O port must be configured every time the driver is opened.
The configuration is not stored between sessions.

6.16 DigWrite
PCI Card only

Syntax INT WINAPI DigWrite(DevHandleT devHandle, BYTE

byDigData);

devHandle refers to an interface handle.

byDigData refers to a value to write to the digital output

port, where the integer range is between 0 and 255 if the

entire digital I/O port is configured for output, or between

0 and 15 if only one nibble (either low or high) is

configured for output.

Returns -1 if no part of the digital I/O port is configured for output.

Mode Any

Bus States None

Example DigRead(devHandle, 0x0A);

Writes the given value to the digital I/O port per the

current configuration.

See Also DigSetup, DigRead

The DigWrite command writes the given value to the digital I/O port per the
input/output configuration of the port. If the entire port is configured for output,
then the data value with a range from 0 to 255 is written to the port. If either the

54

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

upper or lower nibble is configured for input, and the other for output, then the
data value is truncated to the range from 0 to 15 and it is written to the appropriate
nibble per the current configuration.

NOTES
1. This function does not configure the digital I/O port for output. The
caller must use DigSetup to configure the port before performing any
reads or writes. If neither nibble is configured for output the function
returns -1 and sets the error code to IOT_BAD_VALUE2.

2. Outputs do not persist after an interface is closed. At that time, all
digital I/O lines are configured for input.

6.17 Disarm

Syntax INT WINAPI Disarm(DevHandleT devHandle, ArmCondT

condition);

devHandle refers to either an IEEE 488 interface or an

external device. If devHandle refers to an external

device, then the Disarm command acts on the hardware

interface to which the external device is attached.

condition specifies which of the conditions are no longer

to be monitored. If condition is 0, then all conditions are

Disarmed.

Returns -1 if error; otherwise, the current bit map of the event

condition mask.

Mode Any

Bus States None

Examples errorcode=Disarm(ieee,acTalk|acListen|acChange);

errorcode=Disarm(ieee,0);

See Also Arm, OnEvent

55

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The Disarm command prevents Driver488 from invoking an event handler and
interrupting the PC, even when the specified condition occurs. Your program can
still check for the condition by using the Status command. If the Disarm
command is invoked without specifying any conditions, then all conditions are
disabled. The Arm command may be used to re-enable interrupt detection.

6.18 EnterX

Syntax LONG WINAPI EnterX(DevHandleT devHandle, LPBYTE

data,DWORD count,BOOL forceAddr,TermT*term,BOOL

async,LPDWORD compStat);

devHandle refers to either an IEEE 488 interface or an

external device.

data is a pointer to the buffer into which the data is read.

count is the number of characters to read.

forceAddr is used to specify whether the addressing

control bytes are to be issued for each EnterX command.

term is a pointer to a terminator structure that is used to

set up the input terminators. If term is set to 0, the default

terminator is used.

async is a flag that allows asynchronous data transfer.

Note that this asynchronous flag is ignored in

Driver488/WNT.

compStat is a pointer to an integer containing completion-

status information.

56

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Returns -1 if error

otherwise, the actual count of bytes transferred. The

memory buffer pointed to by the data parameter is filled in

with the information read from the device. Note that the

actual count does not include terminating characters if

term characters are specified by the term in function. In

addition, term characters are not returned but are

discarded.

Mode CA

Bus States With interface handle: *ATN, data

With external device handle: ATN (UNL, MLA, TAG,

*ATN, data)

Example term.EOI = TRUE;

term.nChar = 1;

term.EightBits = TRUE;

term.termChar[0] = ‘\r’;

bytecount=EnterX(timer,data,1024,0,&term,1,&stat);

See Also OutputX, Term, Buffered

NOTE
The asynchronous flag async is ignored in Driver488/WNT.

The EnterX command reads data from the I/O adapter. If an external device is
specified, then Driver488 is addressed to Listen, and that device is addressed to
Talk. If an interface is specified, then Driver488 must already be configured to
receive data and the external device must be configured to Talk, either as a result
of an immediately preceding EnterX command or as a result of one of the Send
commands. EnterX terminates reception on either the specified count of bytes
transferred, or the specified or default terminator being detected. Terminator
characters, if any, are stripped from the received data before the EnterX command
returns to the calling application.

57

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The forceAddr flag is used to specify whether the addressing control bytes are to
be issued for each EnterX command. If the device handle refers to an I/O
adapter, then forceAddr has no effect and command bytes are not sent. For an
external device, if forceAddr is TRUE then Driver488 always sends the UNL, MLA,
and TAG command bytes. If forceAddr is FALSE, then Driver488 compares the
current device with the previous device that used that interface adapter board for
an EnterX command. If they are the same, then no command bytes are sent. If
they are different, then EnterX acts as if the forceAddr flag were TRUE and sends
the command bytes. The forceAddr flag is usually set TRUE for the first transfer of
data from a device, and then set FALSE for additional transfers from the same
block of data from that device.

Additional Enter Functions

Driver488 provides additional Enter routines that are short-form versions of the
EnterX function. The following Enter functions are already defined in your
header file.

ENTER

Syntax LONG WINAPI Enter(DevHandleT devHandle, LPBYTE

data)

Remarks Enter is equivalent to the following call to EnterX:

EnterX(devHandle,data,sizeof(data),1,0L,0,0L);

The Enter function passes the device handle and a pointer to the data buffer to
the EnterX function. It determines the size of the data buffer that you provided,
and passes that value as the count parameter. It specifies forceAddr is TRUE,
causing Driver488 to re-address the device. The default terminators are chosen by
specifying a 0 as the term parameter. Asynchronous transfer is turned off by
sending 0 for the async parameter, and the completion status value is ignored by
sending 0 for the compStat parameter.

58

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

ENTERN

Syntax LONG WINAPI EnterN(DevHandleT devHandle,LPBYTE

data,int count)

Remarks EnterN is equivalent to the following call to EnterX:

EnterX(devHandle,data,count,1,0L,0,0L);

The EnterN function passes the device handle, the pointer to the data buffer,
and the size of the data buffer to the EnterX function. It specifies forceAddr is
TRUE, causing Driver488 to re-address the device. The default terminators are
chosen by specifying a 0 pointer as the term parameter. Asynchronous transfer is
turned off by sending 0 for the async parameter, and the completion status value is
ignored by sending 0 for the compStat parameter.

ENTERMORE

Syntax LONG WINAPI EnterMore(DevHandleT

devHandle,LPBYTE data)

Remarks EnterMore is equivalent to the following call to EnterX:

EnterX(devHandle,data,sizeof(data),0,0L,0,0L);

The EnterMore function passes the device handle and the pointer to the data
buffer to the EnterX function. It determines the size of the data buffer that you
provided, and passes that value as the count parameter. It specifies forceAddr is
FALSE, therefore, Driver488 does not address the device if it is the same device as
previously used. The default terminators are chosen by specifying a 0 as the term
parameter. Asynchronous transfer is turned off by sending 0 for the async
parameter, and the completion status value is ignored by sending 0 for the
compStat parameter.

ENTERNMORE

Syntax LONG WINAPI EnterNMore(DevHandleT

devHandle,LPBYTE data,int count);

Remarks EnterNMore is equivalent to the following call to EnterX:

EnterX(devHandle,data,count,0,0L,0,0L);

59

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The EnterNMore function passes the device handle, the pointer to the data
buffer, and the size of the data buffer to the EnterX function. It specifies
forceAddr is FALSE; therefore, Driver488 does not address the device if it is the
same device as previously used. The default terminators are chosen by specifying a
0 as the term parameter. Asynchronous transfer is turned off by sending 0 for the
async parameter, and the completion status value is ignored by sending 0 for the
compStat parameter.

6.19 Error

Syntax INT WINAPI Error(DevHandleT devHandle, BOOL

display);

devHandle refers to either an IEEE 488 interface or an

external device.

display indicates whether the error message display

should be ON or OFF.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = Error(ieee, OFF);

See Also OnEvent, GetError, GetErrorList, Status

The Error command enables or disables automatic on-screen display of
Driver488 error messages. Specifying ON enables the error message display, while
specifying OFF disables the error message display. Error ON is the default
condition.

60

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.20 FindListeners

Syntax INT WINAPI FindListeners(DevHandleT devHandle,

BYTE primary, LPWORD listener, DWORD limit);

devHandle refers to either an IEEE 488 interface or an

external device. If devHandle refers to an external

device, then the FindListeners command acts on the

hardware interface to which the external device is

attached.

primary is the primary IEEE 488 bus address to check.

listener is a pointer to a list that contains all Listeners

found on the specified interface board. You must allocate

enough memory to accommodate all of the possible

Listeners up to the limit that he specified.

limit is the maximum number of Listeners to be entered

into the Listener list.

Returns -1 if error

otherwise, the number of Listeners found on the interface

Mode Any

Bus States ATN(MTA, UNL, LAG

Example WORD listeners[5];

errorcode = FindListeners(ieee,10,listeners,5);

See Also CheckListener, BusAddress, Status

The FindListeners command finds all of the devices configured to Listen at the
specified primary address on the IEEE 488 bus. The command first identifies the
primary address to check and returns the number of Listeners found and their
addresses. Then, it fills the user-supplied array with the addresses of the Listeners

61

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

found. The number of Listeners found is the value returned by the function. The
returned values include the secondary address in the upper byte, and the primary
address in the lower byte. If there is no secondary address, then the upper byte is
set to 255; hence, a device with only a primary address of 16 and no secondary
address is represented as 0xFF10 or -240 decimal.

6.21 Finish
Driver488/W95 only

Syntax INT WINAPI Finish(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an

external device. If devHandle refers to an external

device, the Finish command acts on the hardware

interface to which the external device is attached.

Returns -1 if error

Mode CA

Bus States ATN

Example errorcode = Finish(ieee);

See Also Resume, PassControl

The Finish command asserts Attention (ATN) and releases any pending
holdoffs after a Resume function is called with the monitor flag set.

62

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.22 GetError

Syntax ErrorCodeT WINAPI GetError(DevHandleT devHandle,

LPSTR errText);

devHandle refers to either the IEEE 488 interface or the

external device that has the associated error.

errText is the string that will contain the error message. If

errText is non-null, the string must contain at least 247

bytes.

Returns -1 if error

otherwise, it returns the error code number associated

with the error for the specified device.

Mode Any

Bus States None

Example errnum = GetError(ieee,errText);

printf(“Error number:%d;%s \n”errnum,errText);

See Also Error, GetErrorList, Status

The GetError command is user-called after another function returns an error
indication. The device handle sent to the function that returned the error
indication is sent to GetError as its devHandle parameter. GetError finds the error
associated with that device and returns the error code associated with that error. If
a non-null error text pointer is passed, GetError also fills in up to 247 bytes in the
string. The application must ensure that sufficient space is available.

63

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.23 GetErrorList

Syntax ErrorCodeT WINAPI GetErrorList(DevHandlePT dhList,

LPSTR errText, DevHandlePT errHandle);

dhList is a pointer to a list of external devices that was

returned from a function, due to an error associated with

one of the external devices in the list.

errText is the text string that contains the error message.

You must ensure that the string length is at least 247

bytes.

errHandle is a pointer to the device handle that caused

the error.

Returns -1 if error; otherwise, it returns the error number

associated with the given list of devices.

Mode Any

Bus States None

Example char errText[329];

int errHandle;

int errnum;

result = ClearList(list);

if (result == -1) {

errnum=GetErrorList(list,errText,&errHandle);

printf(“Error %d;%s,at handle %d\n”, errnum, errText,

errHandle);

}

See Also Error, GetError, Status

64

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The GetErrorList command is user-called, after another function identifying a
list of device handles returns an error indication. The device handle list sent to the
function that returned the error indication, is sent to GetErrorList. GetErrorList
finds the device which returned the error indication, returning the handle
through errHandle, and returns the error code associated with that error. If a
non-null error text pointer is passed, GetError also fills in up to 247 bytes in the
string. The application must ensure that sufficient space is available.

6.24 Hello

Syntax INT WINAPI Hello(DevHandleT devHandle, LPSTR

message);

devHandle refers to either an IEEE 488 interface or an

external device. If devHandle refers to an external

device, the Hello command acts on the hardware

interface to which the external device is attached.

message is a character pointer that contains the returned

message.

Returns -1 if error; otherwise, the version of the Dynamic Link

Library (DLL) and the version of the device driver. The

returned byte count will never exceed 247 bytes.

Mode Any

Bus States None

Example char message[247];

result = Hello(ieee,message);

printf(“%s\n”,message);

See Also Status, OpenName, GetError

65

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The Hello command is used to verify communication with Driver488, and to
read the software revision number. If a non-null string pointer is passed, Hello fills
in up to 247 bytes in the string. The application must ensure that sufficient space
is available. When the command is sent, Driver488 returns a string similar to the
following:

Driver488 Revision X.X (C)199X ...

where X is the appropriate revision or year number.

6.25 KeepDevice

Syntax INT WINAPI KeepDevice(DevHandleT devHandle);

devHandle refers to an external device.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = KeepDevice(scope);

See Also MakeDevice, MakeNewDevice, RemoveDevice,

OpenName

NOTE
KeepDevice will update an existing device or will create a new device in
the Registry. This update feature is new and useful. For example, if you
wish to change the bus address of the device and make it a permanent
change.

The KeepDevice command changes the indicated temporary Driver488 device
to a permanent device, visible to all applications. Permanent Driver488 devices are
not removed when Driver488 is closed. Driver488 devices are created by
MakeDevice and are initially temporary. Unless KeepDevice is used, all temporary
Driver488 devices are forgotten when Driver488 is closed. The only way to remove
the permanent device once it has been made permanent by the KeepDevice
command, is to use the RemoveDevice command.

66

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.26 Listen

Syntax INT WINAPI Listen(DevHandleT devHandle, BYTE pri,

BYTE sec);

devHandle refers to either an IEEE 488 interface or an

external device. If devHandle refers to an external

device, the Listen command acts on the associated

interface.

pri and sec specify the primary and secondary addresses

of the device which is to be addressed to listen.

Returns -1 if error

Mode CA

Bus States ATN, LAG

Example errorcode = Listen (ieee, 12, -1);

See Also Talk, SendCmd, SendData, SendEoi, FindListener

The Listen command addresses an external device to Listen.

6.27 Local

Syntax INT WINAPI Local(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an

external device.

Returns -1 if error

Mode SC

Bus States *REN

67

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Examples errorcode = Local(ieee); To unassert the Remote Enable

(REN) line, the IEEE 488 interface is specified.

errorcode = Local(wave); To send the Go To Local (GTL)

command, an external device is specified.

See Also LocalList, Remote, AutoRemote

In the System Controller mode, the Local command issued to an interface
device causes Driver488 to unassert the Remote Enable (REN) line. This causes
devices on the bus to return to manual operation. A Local command addressed to
an external device places the device in the local mode via the Go To Local (GTL)
bus command.

6.28 LocalList

Syntax INT WINAPI LocalList(DevHandlePT dhList);

dhList refers to a pointer to a list of external devices.

Returns -1 if error

Mode CA

Bus States ATN(UNL, MTA, LAG,GTL

Example deviceList[0] = wave;

deviceList[1] = timer;

deviceList[2] = dmm;

deviceList[3] = NODEVICE;

errorcode = LocalList(deviceList);

Sends the Go To Local (GTO) bus command to a list of

external devices.

See Also Local, Remote, RemoteList, AutoRemote

In the System Controller mode, the LocalList command issued to an interface
device, causes Driver488 to unassert the Remote Enable (REN) line. This causes

68

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

devices on the bus to return to manual operation. A LocalList command
addressed to an external device, places the device in the local mode via the Go To
Local (GTL) bus command.

6.29 Lol

Syntax INT WINAPI Lol(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an

external device. If devHandle refers to an external

device, the Lol command acts on the hardware interface

to which the external device is attached.

Returns -1 if error

Mode CA

Bus States ATN(LLO

Example errorcode = Lol(ieee);

See Also Local, LocalList, Remote, RemoteList

The Lol command causes Driver488 to issue an IEEE 488 LocalLockout (LLO)
bus command. Bus devices that support this command are thereby inhibited from
being controlled manually from their front panels.

69

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.30 MakeDevice

Syntax INT WINAPI MakeDevice(DevHandleT devHandle,

LPSTR name);

devHandle refers to an existing external device.

name is the device name of the device that is to be made

and takes the configuration of the device given by

devHandle.

Returns -1 if error; otherwise, the DevHandleT of the new device.

Note that the new device is an exact copy (except for the

name) of the specified device as it currently exists in

memory and not in the Registry.

Mode Any

Bus State None

Example dmm = MakeDevice(scope,”DMM”);

BusAddress(dmm,16,-1);

Create a device named DMM, attached to the same I/O

adapter as scope, and set its IEEE 488 bus address to

16.

See Also MakeNewDevice, KeepDevice, RemoveDevice,

OpenName, Close

The MakeDevice command creates a new temporary Driver488 device that is an
identical copy of an already existing Driver488 external device. The new device is
attached to the same I/O adapter of the existing device and has the same bus
address, terminators, timeouts, and other characteristics. The newly created device
is temporary and is removed when Driver488 is closed. KeepDevice may be used to
make the device permanent. To change the default values assigned to the device,
it is necessary to call the appropriate configuration functions such as BusAddress,
IOAddress, and TimeOut.

70

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.31 MakeNewDevice

Syntax DevHandleT WINAPI MakeNewDevice(LPSTR iName,

LPSTR aName,BYTE primary,BYTE secondary,TermPT

In,TermPT Out,DWORD tOut);

devHandle refers to the new external device.

iName is the user name of the interface on which the

device is to be created.

aName is the user name of the device.

primary and secondary are the secondary and primary

bus addresses to be specified. For no secondary

address, a -1 must be specified.

In and Out are pointers to terminator structures specified

to set up the respective input and output terminators of

the device.

tOut is the timeout parameter to be specified.

Returns -1 if error; otherwise, the DevHandleT of the new device,

based on the parameters specified.

Mode Any

Bus State None

Example DevHandleT anotherDevice;

anotherDevice = MakeNewDevice(“IEEE0”,

“Scope”,13,-1,NULL, NULL,10000);

Specifies parameters for: Pointer to the interface, pointer

to the device name, primary and secondary addresses,

pointers to the term In and Out structures, and timeout in

milliseconds.

71

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

See Also MakeDevice, KeepDevice, RemoveDevice, OpenName,

Close

This function is similar to the MakeDevice function, except that
MakeNewDevice will create a new device based on the parameters specified,
instead of simply cloning an existing device.

The MakeNewDevice command does not save the parameters of the newly
created device in the system registry. To save the device, call the KeepDevice
function.

NOTE
The MakeNewDevice command will only create, not save, a new device.
Interface descriptions are created and maintained by the configuration
utility and the IEEE 488 configuration applet in the Windows Control
Panel.

6.32 MyListenAddr

Syntax INT WINAPI MyListenAddr (DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

MyListenAddr command acts on the associated interface.

Returns -1 if error

Mode CA

Bus States ATN, MLA

Example errorcode = MyListenAddr (ieee);

See Also MyTalkAddr, Talk, Listen, SendCmd

The MyListenAddr command addresses the interface to Listen.

72

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.33 MyTalkAddr

Syntax INT WINAPI MyTalkAddr (DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

MyTalkAddr command acts on the associated interface.

Returns -1 if error

Mode CA

Bus States ATN, MTA

Example errorcode = MyTalkAddr (ieee);

See Also MyListenAddr, Listen, SendCmd

The MyTalkAddr command addresses the interface to Talk.

73

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.34 OnDigEvent
PCI Card Only

Syntax INT WINAPI OnDigEvent(DevHandleT devHandle,

HWND hwnd, OpaqueP lParam);

devHandle refers to an interface handle.

hwnd is the window handle to receive event notification.

lParam value will be passed in the notification message.

Returns -1 if error

Mode Any

Bus States None

Example OnDigEvent(devHandle, TRUE, 0x10L);

Sets the event notification to be via a window message to

the specified window handle. The value 0x10 will be

passed with the message.

See Also DigArm, OnDigEventVDM, OnEvent

The OnDigEvent command sets the handle of a window to receive a notification
message when a digital match event is triggered. This function uses the same
mechanism as the OnEvent command. For details, see the description of OnEvent.

NOTE
This function sets the event generation mechanism to be a window-
notification message, replacing any previously defined event-
notification mechanism. Only one event-notification mechanism can be
used at one time.

74

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.35 OnDigEventVDM
PCI Card Only

Syntax INT WINAPI OnDigEventVDM(DevHandleT devHandle,

DigEventFuncT func, OpaqueP lParam);

devHandle refers to an interface handle.

func is a user-defined function to be called when the

digital match event is triggered.

lParam value will be passed in the notification message.

Returns -1 if error

Mode Any

Bus States None

Example OnDigEventVDM(devHandle, MyFunc, 0x10L);

Sets the event notification to be via a function call to the

specified callback function. The value 0x10 will be

passed to the function.

See Also DigArm, OnDigEventVDM, OnEventVDM

The OnDigEventVDM command sets the address of a “C”-style (__stdcall)
function to be called when a digital match event occurs. This function uses a
similar mechanism as the OnEventVDM command. The prototype of the callback
function for OnDigEventVDM is:

void DigEventFunc(DevHandleT devHandle, LPARAM lParam)

The lParam value which is passed to OnDigEventVDM is passed on to the
callback function when the event occurs. For details, see the description of
OnEventVDM.

75

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

NOTE
This function sets the event-generation mechanism to be a callback
function, replacing any previously defined event notification
mechanism. Only one event-notification mechanism can be used at one
time.

6.36 OnEvent

Syntax INT WINAPI OnEvent(DevHandleT devHandle, HWND

hWnd, OpaqueP lParam);

devHandle refers to either an interface or an external

device.

hWnd is the window handle to receive the event

notification.

lParam value will be passed in the notification message.

Returns -1 if error

Mode Any

Bus States None

Example ieee = OpenName (“ieee”);

OnEvent (ieee, hWnd, (OpaqueP) 12345678L);

Arm (ieee, acSRQ | acError);

break;

See Also OnEventVDM, Arm, Disarm

76

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The OnEvent command causes the event handling mechanism to issue a
message upon occurrence of an Armed event. The message will have a type of
WM_IEEE488EVENT, whose value is retrieved via:

RegisterWindowMessage ((LPSTR) “WM_IEEE488EVENT”);

The associated wParam is an event mask indicating which Armed event(s)
caused the notification, and the lParam is the value passed to OnEvent. Note that
although there is a macro for WM_IEEE488EVENT in the header file for each
language, this macro resolves to a function call and therefore cannot be used as a
case label. The preferred implementation is to include a default case in the
message handling case statement and directly compare the message ID with
WM_IEEE488EVENT. The following is a full example of a program using the
OnEvent function:

LONG FAR WINAPI export
WndProc(HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam);
{
HANDLE
ieee;
switch (iMessage)

{
case WM_CREATE:

ieee = OpenName (“ieee”);
OnEvent (ieee, hWnd, (OpaqueP) 12345678L);
Arm (ieee, acSRQ | acError);
break;

default:
if (iMessage == WM_IEEE488EVENT) {

char buff [80];
wsprintf (buff, “Condition = %04X,
Param = %081X”,wParam, lParam);
MessageBox (hWnd, (LPSTR) buff,
(LPSTR) “Event Noted”, MB OK);
return TRUE;

}
}

}

77

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.37 OnEventVDM

Syntax INT WINAPI OnEventVDM(DevHandleT devHandle,

EventFuncT func);

devHandle refers to either an interface or an external

device.

func is a user-specified interrupt-handler function that is to

perform some user-defined function, when one of the

Armed conditions occur.

Returns -1 if error

Mode Any

Bus States None

Example Arm(ieee0, acSRQ);

OnEventVDM(ieee0, srqHandler);

Arms SRQ detection and sets up SRQ function handler

See Also OnEvent, Arm, Disarm

78

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The OnEventVDM (VDM refers to Virtual DOS Machine) allows a call back to a
user-specified function in a console mode application. The following is a full
example of a console mode program using the OnEventVDM function:

#include <windows.h>
#include <stdio.h>
#include “iotieee.h”
// For debugging
#define qsk(v,x) (v=x, printf(#x “returned %d/n”, v))
void
srqHandler(DevHandlerT devHandle, UINT mask)
{

LONG xfered;
printf(“\007\n\nEVENT-FUNCTION on %d mask 0x%04x\n”,
devHandle, mask);
qsk(xfered, Spoll(devHandle));
printf(“\n\n”);

}
void
main(void)
{

LONG result, xfered;
int ioStatus, x;
DevHandleT ieee0, wave14, wave16;
TermT myTerm;
UCHAR buffer[500];
printf(“\n\nSRQTEST program PID %d\n”,GetCurrentProcessId ());
qsk(ieee0, OpenName(“ieee0”));
qsk(wave14, OpenName(“Wave14”));
qsk(wave16, OpenName(“Wave16”));
qsk(result, Abort(wave14));
qsk(result, Abort(wave16));
qsk(x, Hello(ieee0, buffer));
printf(“\n%s\n\n”, buffer);
myTerm.EOI = 1;
myTerm.nChar = 0;
myTerm.termChar[0] = ‘\r’;
myTerm.termChar[1] = ‘\n’;
// Arm SRQ detection and set up SRQ function handler
qsk(x, Arm(ieee0, acSRQ));
qsk(x, OnEventVDM(ieee0, srqHandler));
// Tell the Wave to assert SRQ in 3 seconds
qsk(xfered,Output(wave16,”t3000x”,6L,1,0,&myTerm,0,&ioStatus));

79

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

printf(“Completion code: 0x%04x\n”, ioStatus);

// Normally, your program would be off doing other work; for
// this example we will just hold here for a short time.
For(result = 0; result 30000; result++) {

printf(“Result is %06d\r”, result);
}
printf(“\n\n”);
qsk(xfered, Spoll(wave16));
qsk(x, Close(wave14));
qsk(x, Close(wave16));
qsk(x, Close(ieee0));

}

6.38 OpenName

Syntax DevHandleT WINAPI OpenName(LPSTR name);

name is the name of an interface or external device.

Returns -1 if error

otherwise, the device handle associated with the given

name

Mode Any

Bus State None

Examples dmm = OpenName(“DMM”);

Opens the external device DMM

dmm = OpenName(“IEEE:DMM”);

Specifies the interface to which the external device is

connected

See Also MakeDevice, Close

80

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The OpenName command opens the specified interface or external device and
returns a device handle for use in accessing that device.

6.39 OutputX

Syntax LONG WINAPI OutputX(DevHandleT devHandle,

LPBYTE data, DWORD count, BOOL last, BOOL

forceAddr, TermT *terminator, BOOL async, LPDWORD

compStat);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

OutputX command acts on the hardware interface to

which the external device is attached.

data is a string of bytes to send.

count is the number of bytes to send.

last is a flag that forces the device output terminator to be

sent with the data.

forceAddr is used to specify whether the addressing

control bytes are to be issued for each OutputX

command.

terminator is a pointer to a terminator structure that is

used to set up the input terminators. If terminator is set to

0, the default terminator is used.

async is a flag that allows asynchronous data transfer.

Note that this asynchronous flag is ignored in

Driver488/WNT.

compStat is a pointer to an integer containing completion-

status information.

81

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Returns -1 if error

otherwise, the number of characters transferred

Mode CA

Bus States With interface handle: REN (if SC and AutoRemote),

*ATN, ATN

With external device handle: REN (if SC and

AutoRemote), ATN(MTA, UNL, LAG, *ATN, ATN

Example term.EOI = TRUE;

term.nChar = 1;

term.EightBits = TRUE;

term.termChar[0] = ‘\r’;

data = “U0X”;

count = strlen(data);

bytecnt=Output(timer,data,count,1,0,&term,0,&stat);

See Also EnterX, Term, TimeOut, Buffered

NOTE
The asynchronous flag async is ignored in Driver488/WNT.

The OutputX command sends data to an interface or external device. The
Remote Enable (REN) line is first asserted if Driver488 is the System Controller
and AutoRemote is enabled. Then, if a device address (with optional secondary
address) is specified, Driver488 is addressed to Talk and the specified device is
addressed to Listen. If no address is specified, then Driver488 must already be
configured to send data, either as a result of a preceding OutputX command, or as
the result of a Send command. Terminators are automatically appended to the
output data as specified.

82

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The forceAddr flag is used to specify whether the addressing control bytes are to
be issued for each OutputX command. If the device handle refers to an interface,
forceAddr has no effect and command bytes are not sent. If the device handle
refers to an external device and forceAddr is TRUE, Driver488 addresses the
interface to Talk and the external device to Listen. If forceAddr is FALSE,
Driver488 compares the current device with the most recently addressed device on
that interface. If the addressing information is the same, no command bytes are
sent. If they are different, OutputX acts as if the forceAddr flag were TRUE and
sends the addressing information.

The terminator is a pointer to a terminator structure that is used to set up the
input terminators. This pointer may be a null pointer, requesting use of the
default terminators for the device, or it may point to a terminator structure
requesting no terminators. The async is a flag that allows asynchronous data
transfer. If this flag is TRUE, the OutputX command returns to the caller as soon
as the data transfer is underway. FALSE indicates that the OutputX command
should not return until the transfer is complete. The compStat is a pointer to an
integer containing completion status information. A null pointer indicates that
completion status is not requested. In the case of an asynchronous transfer, this
pointer must remain valid until the transfer is complete.

Additional Output Functions

Driver488 provides additional Output functions that are short-form versions of the
OutputX function. The following Output functions are already defined in your
header file.

OUTPUT

Syntax LONG WINAPI Output(DevHandleT devHandle,LPBYTE

data);

Remarks Output is equivalent to the following call to OutputX:

OutputX(devHandle,data,strlen(data),1,1,0L,0,0L);

The Output function passes the device handle and a pointer to the data buffer
to the OutputX function. It determines the size of the data buffer that you
provided, and passes that value as the count parameter. It specifies that the
forceAddr flag is set TRUE, which causes Driver488 to address the device if an
external device is specified. The default terminators are chosen by specifying a 0
pointer as the terminator parameter. Synchronous transmission is specified by

83

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

sending 0 for the async parameter, and the completion status value is ignored by
sending a 0 for the compStat pointer.

OUTPUTN

Syntax LONG WINAPI OutputN(DevHandleT

devHandle,LPBYTE data,DWORD count);

Remarks OutputN is equivalent to the following call to OutputX:

OutputX(devHandle,data,count,0,1,0L,0,0L);

The OutputN function passes the device handle and a pointer to the data buffer
to the OutputX function. It specifies that the forceAddr flag is set TRUE, which
causes Driver488 to address the device if an external device is specified. The
default terminators are chosen by specifying a 0 pointer as the terminator
parameter. Synchronous transmission is specified by sending 0 for the async
parameter, and the completion-status value is ignored by sending a 0 for the
compStat pointer.

OUTPUTMORE

Syntax LONG WINAPI OutputMore(DevHandleT devHandle,

LPBYTE data);

Remarks OutputMore is equivalent to the following call to OutputX:

OutputX(devHandle,data,strlen(data),1,0,0L,0,0L);

The OutputMore function passes the device handle and a pointer to the data
buffer to the OutputX function. It determines the size of the data buffer that you
provided, and passes that value as the count parameter. It specifies that the
forceAddr flag is set FALSE, so Driver488 does not re-address the device if it is the
same device as that previously used. The default terminators are chosen by
specifying a 0 pointer as the terminator parameter. Synchronous transmission is
specified by sending 0 for the async parameter, and the completion-status value is
ignored by sending a 0 pointer for the compStat pointer.

84

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

OUTPUTNMORE

Syntax LONG WINAPI OutputNMore (DevHandleT devHandle,

LPBYTE data, DWORD count);

Remarks OutputNMore is equivalent to the following call to

OutputX:

OutputX(devHandle,data,0,0,0L,0,0L);

The OutputNMore function passes the device handle and a pointer to the data
buffer to the OutputX function. It specifies that the forceAddr flag is set FALSE,
so Driver488 does not re-address the device if it is the same device as that
previously used. The default terminators are chosen by specifying a 0 pointer as
the terminator parameter. Synchronous transmission is specified by sending 0 for
the async parameter, and the completion-status value is ignored by sending a 0
pointer for the compStat pointer.

6.40 PassControl

Syntax INT WINAPI PassControl(DevHandleT devHandle);

devHandle refers to an external device to which control is

passed.

Returns -1 if error

Mode CA

Bus States ATN(UNL, MLA, TAG, UNL, TCT, *ATN

Example errorcode = PassControl(scope);

See Also Abort, Reset, SendCmd

The PassControl command allows Driver488 to give control to another controller
on the bus. After passing control, Driver488 enters the Peripheral mode. If
Driver488 was the System Controller, then it remains the System Controller, but it
is no longer the Active Controller. The Controller now has command of the bus

85

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

until it passes control to another device or back to Driver488. The System
Controller can regain control of the bus at any time by issuing an Abort command.

6.41 PPoll

Syntax INT WINAPI PPoll(DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, then

the PPoll command acts on the hardware interface to

which the external device is attached.

Returns -1 if error

otherwise, a number in the range 0 to 255

Mode CA

Bus States ATN(EOI, *EOI

Example errorcode = PPoll(ieee);

See Also PPollConfig, PPollUnconfig, PPollDisable, SPoll

The PPoll (Parallel Poll) command is used to request status information from
many bus devices simultaneously. If a device requires service then it responds to a
Parallel Poll by asserting one of the eight IEEE 488 bus data lines (DIO1 through
DIO8, with DIO1 being the least significant). In this manner, up to eight devices
may simultaneously be polled by the controller. More than one device can share
any particular DIO line. In this case, it is necessary to perform further Serial
Polling (SPoll) to determine which device actually requires service.

Parallel Polling is often used upon detection of a Service Request (SRQ),
though it may also be performed periodically by the controller. In either case,
PPoll responds with a number from 0 to 255 corresponding to the eight binary
DIO lines. Not every device supports Parallel Polling. Refer to the manufacturer’s
documentation for each bus device to determine if PPoll capabilities are
supported.

86

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.42 PPollConfig

Syntax INT WINAPI PPollConfig(DevHandleT devHandle,BYTE

ppresponse);

devHandle refers to either an interface or an external

device to configure for the Parallel Poll.

ppresponse is the decimal equivalent of the four binary

bits S, P2, P1, and P0 where S is the Sense bit, and P2,

P1, and P0 assign the DIO bus data line used for the

response.

Returns -1 if error

Mode CA

Bus States ATN(UNL, MTA, LAG, PPC

Example errorcode = PPollConfig (dmm,0x0D);

Configure device DMM to assert DIO6 when it desires

service (ist = 1) and it is Parallel Polled (0x0D = &H0D =

1101 binary; S=1, P2=1, P1=0, P0=1; 101 binary = 5

decimal = DIO6).

See Also PPoll, PPollUnconfig, PPollDisable

The PPollConfig command configures the Parallel Poll response of a specified
bus device. Not all devices support Parallel Polling and, among those that do, not
all support the software control of their Parallel Poll response. Some devices are
configured by internal switches.

The Parallel Poll response is set by a four-bit binary number response: S, P2, P1,
and P0. The most significant bit of response is the Sense (S) bit. The Sense bit is
used to determine when the device will assert its Parallel Poll response. Each bus
device has an internal individual status (ist). The Parallel Poll response is asserted
when this ist equals the Sense bit value S. The ist is normally a logic 1 when the
device requires attention, so the S bit should normally also be a logic 1. If the S bit

87

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

is 0, then the device asserts its Parallel Poll response when its ist is a logic 0. That
is, it does not require attention. However, the meaning of ist can vary between
devices, so refer to your IEEE 488 bus device documentation. The remaining 3 bits
of response: P2, P1, and P0, specify which DIO bus data line is asserted by the
device in response to a Parallel Poll. These bits form a binary number with a
decimal value from 0 through 7, specifying data lines DIO1 through DIO8,
respectively.

6.43 PPollDisable

Syntax INT WINAPI PPollDisable(DevHandleT devHandle);

devHandle is either an interface or an external device that

is to have its Parallel Poll response disabled.

Returns -1 if error

Mode CA

Bus States ATN(UNL, MTA, LAG, PPC, PPD

Example errorcode = PPollDisable(dmm);

Disables Parallel Poll of device DMM.

See Also PPoll, PPollConfig, PPollUnconfig

The PPollDisable command disables the Parallel Poll response of a selected bus
device.

88

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.44 PPollDisableList

Syntax INT WINAPI PPollDisableList(DevHandlePT dhList);

dhList is a pointer to a list of external devices that are to

have their Parallel Poll response disabled.

Returns -1 if error

Mode CA

Bus States ATN(UNL, MTA, LAG, PPC, PPD

Example deviceList[0] = wave;

deviceList[1] = timer;

deviceList[2] = dmm;

deviceList[3] = NODEVICE;

errorcode = PPollDisableList(deviceList);

See Also PPoll, PPollConfig, PPollUnconfig

The PPollDisableList command disables the Parallel Poll response of selected
bus devices.

6.45 PPollUnconfig

Syntax INT WINAPI PPollUnconfig(DevHandleT devHandle);

devHandle refers to a hardware interface. If devHandle

refers to an external device, then the PPollUnconfig

command acts on the hardware interface to which the

external device is attached.

Returns -1 if error

Mode CA

Bus States ATN(PPU

Example errorcode = PPollUnconfig(ieee);

89

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

See Also PPoll, PPollConfig, PPollDisable

The PPollUnconfig command disables the Parallel Poll response of all bus
devices.

6.46 Remote

Syntax INT WINAPI Remote(DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle refers to an interface, then the

Remote Enable (REN) line is asserted. If devHandle

refers to an external device, then that device is addressed

to Listen and placed into the Remote state.

Returns -1 if error

Mode SC

Bus States With interface: REN

With external device: REN, ATN(UNL, MTA, LAG

Examples errorcode = Remote(ieee);

Asserts the REN bus line

errorcode = Remote(scope);

Asserts the REN bus line and addresses the scope

device specified to Listen, to place it in the Remote state.

See Also Local, LocalList, RemoteList

The Remote command asserts the Remote Enable (REN) bus management line.
If an external device is specified, then Remote will also address that device to
Listen, placing it in the Remote state.

90

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.47 RemoteList

Syntax INT WINAPI RemoteList(DevHandlePT dhList);

dhList is a pointer to a list of devices.

Returns -1 if error

Mode SC(CA

Bus States REN, ATN(UNL, MTA, LAG

Example deviceList[0] = wave;

deviceList[1] = timer;

deviceList[2] = dmm;

deviceList[3] = NODEVICE;

errorcode = RemoteList(deviceList);

Asserts the REN bus line and addresses a list of specified

devices to Listen, to place these specified devices in the

Remote state.

See Also Remote, Local, LocalList

The RemoteList command asserts the Remote Enable (REN) bus management
line. If external devices are specified, then RemoteList will also address those
devices to Listen, placing them in the Remote state.

6.48 RemoveDevice

Syntax INT WINAPI RemoveDevice(DevHandleT devHandle);

devHandle specifies an interface or an external device to

remove.

Returns -1 if error

Mode Any

91

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Bus States None

Example errorcode = RemoveDevice(dmm);

See Also MakeDevice, KeepDevice

The RemoveDevice command removes the specific temporary or permanent
Driver488 device that was created with either the MakeDevice command or the
startup configuration. This command also removes a device that was made
permanent through a KeepDevice command.

6.49 Request

Syntax INT WINAPI Request(DevHandleT devHandle, BYTE

spstatus);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

Request command acts on the hardware interface to

which the external device is attached.

spstatus is the Service Request status in the range 0 to

255.

Returns -1 if error

Mode *CA

Bus States SRQ (if rsv is set)

*SRQ (if rsv is not set)

Examples errorcode = Request(ieee,0);

Clears SRQ and Serial Poll Response.

errorcode = Request(ieee,64+2+4);

92

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Generates an SRQ (decimal 64) with DIO2 (decimal 2)

and DIO3 (decimal 4) set in the Serial Poll Response.

See Also Status, ControlLine

In Peripheral mode, Driver488 is able to request service from the Active
Controller by asserting the Service Request (SRQ) bus signal. The Request
command sets or clears the Serial Poll status (including Service Request) of
Driver488. Request takes a numeric argument in the decimal range 0 to 255 (hex
range &H0 to &HFF) that is used to set the Serial Poll status. When Driver488 is
Serial Polled by the Controller, it returns this byte on the DIO data lines.

The data lines are numbered DIO8 through DIO1. DIO8 is the most significant
line and corresponds to a decimal value of 128 (hex &H80). DIO7 is the next
most significant line and corresponds to a decimal value of 64 (hex &H40). DIO7
has a special meaning: It is the Request for Service (rsv) bit. If rsv is set, then
Driver488 asserts the Service Request (SRQ) bus signal. If DIO7 is clear (a logic 0),
then Driver488 does not assert SRQ. When Driver488 is Serial Polled, all eight bits
of the Serial Poll status are returned to the Controller. The rsv bit is cleared when
Driver488 is Serial Polled by the Controller. This causes Driver488 to stop
asserting SRQ.

6.50 Reset

Syntax INT WINAPI Reset(DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

Reset command acts on the hardware interface to which

the external device is attached.

Returns -1 if error

Mode Any

Bus States None

Example errorcode=Reset(ieee);

See Also Abort, Term, TimeOut

93

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The Reset command provides a warm start of the interface. It is equivalent to
issuing the following command process, including clearing all error conditions:

1. Stop.

2. Disarm.

3. Reset hardware (resets to Peripheral if not System Controller).

4. Abort (if System Controller).

5. Error ON.

6. Local.

7. Request 0 (if Peripheral).

8. Clear Change, Trigger, and Clear status.

9. Reset I/O adapter settings to installed values (BusAddress, TimeOut, IntLevel
and DmaChannel).

6.51 Resume
Driver488/W95 only

Syntax INT WINAPI Resume(DevHandleT devHandle, BOOL

monitor);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, then

the Resume command acts on the hardware interface to

which the external device is attached.

monitor is a flag that when it is ON, Driver488 monitors

the data.

Returns -1 if error

Mode CA

Bus States *ATN

94

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Examples errorcode = Resume(ieee,OFF);

Do not go into monitoring mode.

errorcode = Resume(ieee,ON);

errorcode = Finish(ieee);

Go into monitoring mode.

See Also Finish

The Resume command unasserts the Attention (ATN) bus signal. Attention is
normally kept asserted by Driver488, but it must be unasserted to allow transfers to
take place between two peripheral devices. In this case, Driver488 sends the
appropriate Talk and Listen addresses, and then must unassert Attention with the
Resume command.

If monitor is specified, Driver488 monitors the handshaking process but does
not participate in it. Driver488 takes control synchronously when the last
terminator or EOI is encountered. At that point, the transfer of data stops. The
Finish command must be called to assert Attention and release any pending
holdoffs to be ready for the next action.

6.52 SendCmd

Syntax INT WINAPI SendCmd(DevHandleT devHandle, LPBYTE

commands, DWORD len);

devHandle refers to an interface handle.

commands points to a string of command bytes to be

sent.

len is the length of the command string.

Response None

Mode CA

Bus States User-defined

Example char command[] = “U?0”;

95

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

errorcode = SendCmd(ieee, &command, size of

command);

See Also SendData, SendEoi

The SendCmd command sends a specified string of bytes with Attention (ATN)
asserted, causing the data to be interpreted as IEEE 488 command bytes.

6.53 SendData

Syntax INT WINAPI SendData(DevHandleT devHandle, LPBYTE

data, DWORD len);

devHandle refers to an interface handle.

data points to a string of data bytes to be sent.

len is the length of the data string.

Response None

Mode Any

Bus States User-defined

Example char data[] = “W0X”;

errorcode = SendData(ieee, data, strlen (data));

See Also SendCmd, SendEoi

The SendData command provides byte-by-byte control of data transfers and gives
greater flexibility than the other commands. This command can specify exactly
which operations Driver488 executes.

96

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.54 SendEoi

Syntax INT WINAPI SendEoi(DevHandleT devHandle, LPBYTE

data, DWORD len);

devHandle refers to an interface handle.

data points to a string of data bytes to be sent.

len is the length of the data string.

Response None

Mode Any

Bus States User-defined

Example char data[] = “W0X”;

errorcode = SendEoi(ieee, data, strlen (data));

See Also SendCmd, SendData

The SendEoi command provides byte-by-byte control of data transfers and gives
greater flexibility than the other commands. This command can specify exactly
which operations Driver488 executes. Driver488 asserts EOI during the transfer of
the final byte.

6.55 SPoll

Syntax INT WINAPI SPoll(DevHandleT devHandle);

devHandle refers to either an interface or a specific

external device.

Returns -1 if error; otherwise, 0 or 64 (hardware interface) in the

range 0 to 255 (external device)

97

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Mode Any

Bus States ATN(UNL, MLA, UNT, TAG, SPE, *ATN, ATN(SPD, UNT

Examples errorcode = SPoll(ieee);

Returns the internal SRQ status

errorcode = SPoll(dmm);

Returns the Serial Poll response of the specified device

See Also SPollList, PPoll

In Active Controller mode, the SPoll (Serial Poll) command performs a Serial
Poll of the bus device specified and responds with a number from 0 to 255
representing the decimal equivalent of the eight-bit device response. If rsv (DIO7,
decimal value 64) is set, then that device is signaling that it requires service. The
meanings of the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service
Request (SRQ) bus signal by some bus device. In Active Controller mode, with the
interface device specified, the SPoll command returns the internal SRQ status. If
the internal SRQ status is set, it usually indicates that the SRQ line is asserted.
Driver488 then returns a 64. If it is not set, indicating that SRQ is not asserted,
then Driver488 returns a 0. With an external device specified, SPoll returns the
Serial Poll status of the specified external device.

In Peripheral mode, the SPoll command is issued only to the interface, and
returns the Serial Poll status. If rsv (DIO7, decimal value 64) is set, then Driver488
has not been Serial Polled since the issuing last Request command. The rsv is reset
whenever Driver488 is Serial Polled by the Controller.

6.56 SPollList

Syntax INT WINAPI SPollList(DevHandlePT dhList, LPBYTE

result, BYTE flag);

dhList is a pointer to a list of external devices.

result is an array that is filled in with the Serial Poll results

of the corresponding external devices.

flag refers to either ALL, WHILE_SRQ, or UNTIL_RSV.

98

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Returns -1 if error

Mode *CA

98

ATN(UNL, MLA, TAG, SPE, *ATN, ATN(SPD, UNT

Example deviceList[0] = wave;

deviceList[1] = timer;

deviceList[2] = dmm;

deviceList[3] = NODEVICE;

result = SPollList(deviceList, resultList, ALL);

Returns the Serial Poll response for a list of device

handles.

See Also SPoll, PPoll

In Active Controller mode, the SPollList (Serial Poll) command performs a
Serial Poll of the bus devices specified and responds with a number from 0 to 255
(representing the decimal equivalent of the eight-bit device response) for each
device on the list. If rsv (DIO7, decimal value 64) is set, then that device is
signaling that it requires service. The meanings of the other bits are device-
specific.

Serial Polls are normally performed in response to assertion of the Service
Request (SRQ) bus signal by some bus device. In Active Controller mode with the
interface device specified, the SPollList command returns the internal SRQ status
for each device. If the internal SRQ status is set, it usually indicates that the SRQ
line is asserted. Driver488 then returns a 64. If it is not set, indicating that SRQ is
not asserted, then Driver488 returns a 0. With an external device specified,
SPollList returns the Serial Poll status of the specified external device.

In Peripheral mode, the SPollList command is issued only to the interface and
returns the Serial Poll status. If rsv (DIO7, decimal value 64) is set, then Driver488
has not been Serial Polled since the last Request command was issued. The rsv is
reset whenever Driver488 is Serial Polled by the Controller.

99

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The untilflag refers to either ALL, WHILE_SRQ, or UNTIL_RSV. If ALL is
chosen, all the devices are Serial Polled and their results placed into the result
array. If untilflag is WHILE_SRQ, Driver488 Serial Polls the devices until the SRQ
bus signal becomes unasserted, and the results are put into the result array. If
untilflag is UNTIL_RSV, Driver488 Serial Polls the devices until the first device
whose rsv bit is set, is found and the results are put into the result array.

6.57 Status

Syntax INT WINAPI Status(DevHandleT devHandle,

IeeeStatusPT result);

devHandle refers to either an IEEE 488 interface or an

external device. If devHandle refers to an external

device, Status acts on the hardware interface to which the

external device is attached.

result is a pointer to a Status structure.

Returns -1 if error

Mode Any

Bus States None

Example result = Status(ieee,&StatusResult);

if (statusResult.transfer == TRUE) {

printf(“We have a transfer in progress\n”);

} else {

printf(“There is no transfer in progress\n”);

}

See Also GetError, SPoll

100

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The Status command returns various items detailing the current state of
Driver488. They are returned in a data structure, based on the following table:

Status Item Flag Values and Description
Controller Active .CA TRUE: Active Controller; FALSE: Not

CA.

System Controller .SC TRUE: System Controller; FALSE: Not

SC.

Primary Bus Address .Primaddr 0 to 30: Two-digit decimal number.

Secondary Bus Address .Secaddr 0 to 31: Two-digit decimal number, or -1

if no address.

Address Change .addrChange TRUE: Address change has occurred;

FALSE: Not so.

Talker .talker TRUE: Talker; FALSE: Not Talker.

Listener .listener TRUE: Listener; FALSE: Not Listener.

ByteIn .bytein TRUE: Byte in, ready to read; FALSE:

Not so.

ByteOut .byteout TRUE: Byte out, ready to output;

FALSE: Not so.

Service Request .SRQ TRUE: SRQ is asserted; FALSE: SRQ

is not asserted.

Triggered .triggered TRUE: Trigger command received;

FALSE: Not so.

Cleared .cleared TRUE: Clear command received;

FALSE: Not so.

Transfer in Progress .transfer TRUE: Transfer in progress;

FALSE: Not so.

101

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

These Status items are more fully described in the following paragraphs:

• The Controller Active flag (.CA) is true if Driver488 is the Active Controller. If
Driver488 is not the System Controller, then it is initially a Peripheral and it
becomes a controller when Driver488 receives control from the Active
Controller.

• The System Controller flag (.SC) is true if Driver488 is the System Controller.
The System Controller mode may be configured during installation or by
using the SysController command.

• The Primary Bus Address (.Primaddr) is the IEEE 488 bus device primary
address assigned to Driver488 or the specified device. This will be an integer
from 0 to 30. The Secondary Bus Address (.Secaddr) is the IEEE 488 bus
device secondary address assigned to the specified device. This will be either -1
to indicate no secondary address, or an integer from 0 to 31. Note that the
Personal 488 Card can never have a secondary address.

• The Address Change indicator (.addrChange) is set whenever Driver488
become a Talker, Listener, or the Active Controller, or when it becomes no
longer a Talker, Listener, or the Active Controller. It is reset when Status is
read. The Talker (.talker) and Listener (.listener) flags reflect the current
Talker/Listener state of Driver488. As a Peripheral, Driver488 can check this
status to see if it has been addressed to Talk or addressed to Listen by the
Active Controller. In this way, the desired direction of data transfer can be
determined.

• The ByteIn (.byteIn) indicator is set when the I/O adapter has received a byte
that can be read by an Enter command. The ByteOut (.byteOut) indicator is
set when the I/O adapter is ready to output data. The Service Request field
(.SRQ), as an active controller, reflects the IEEE 488 bus SRQ line signal. As a
peripheral, this status reflects the rsv bit that can be set by the Request
command and is cleared when the Driver488 is Serial Polled. For more details,
refer to the SPoll command in this chapter.

• The Triggered (.triggered) and Cleared (.cleared) indicators are set when, as a
Peripheral, Driver488 is triggered or cleared. These two indicators are cleared
when Status is read. The Triggered and Cleared indicators are not updated
while asynchronous transfers are in progress. The Transfer in Progress
(.transfer) indicator signifies an asynchronous transfer in progress.

102

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.58 Stop
Driver488/W95 only

Syntax INT WINAPI Stop(DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

Stop command acts on the hardware interface to which

the external device is attached.

Returns -1 if error

Mode Any

Bus States ATN (Controller)

None (Peripheral)

Example errorcode = Stop(ieee);

See Also EnterX, OutputX, Buffered

The Stop command halts any asynchronous transfer that may be in progress. If
the transfer has completed already, then Stop has no effect. The actual number of
characters transferred is available from the Buffered command.

6.59 Talk

Syntax INT WINAPI Talk(DevHandleT devHandle, BYTE pri,

BYTE sec);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

Talk command acts on the associated interface.

pri and sec specify the primary and secondary addresses

of the device which is to be addressed to Talk.

103

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Returns -1 if error

Mode CA

Bus States ATN, TAG

Example errorcode = Talk (ieee, 12, -1);

See Also Listen, SendCmd

The Talk command addresses an external device to Talk.

6.60 Term

Syntax INT WINAPI Term(DevHandleT devHandle, TermT

*terminator, DWORD TermType);

devHandle refers to either an interface or an external

device.

terminator is a pointer to the terminator structure.

TermType can be either TERMIN, TERMOUT, or

TERMIN+TERMOUT, specifying whether input, output, or

both are being set.

Returns -1 if error

Mode Any

Bus States None

Example term.EOI = TRUE;

term.nChar = 1;

term.EightBits = TRUE;

term.termChar[0] = 13;

errorcode = Term(ieee,&term,TERMIN);

See Also TermQuery, EnterX, OutputX, Status

104

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The Term command sets the end-of-line (EOL) terminators for input from, and
output to, I/O adapter devices. These terminators are sent at the end of output
data and expected at the end of input data, in the manner of CR LF as used with
printer data.

During output, Term appends the bus output terminator to the data before
sending it to the I/O adapter device. Conversely, when Driver488 receives the bus
input terminator, it recognizes the end of a transfer and returns the data to the
calling application. The terminators never appear in the data transferred to or
from the calling application. The default terminators for both input and output
are set by the startup configuration and are normally CR LF EOI, which is
appropriate for most bus devices.

End-Or-Identify (EOI) has a different meaning when it is specified for input
than when it is specified for output. During input, EOI specifies that input is
terminated on detection of the EOI bus signal, regardless of which characters have
been received. During output, EOI specifies that the EOI bus signal is to be
asserted during the last byte transferred.

6.61 TermQuery

Syntax INT TermQuery(DevHandleT devHandle, TermT

*terminator, INT TermType);

devHandle refers to either an interface or an external

device.

terminator is a pointer to the terminator structure.

TermType can be either TERMIN, TERMOUT, or

TERMIN+TERMOUT, specifying whether input, output, or

both are being set.

Returns -1 if error

Mode Any

Bus States None

See Also Term, EnterX, OutputX, Status

105

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The TermQuery function queries the terminators setting. Terminators are
defined by the TermT structure.

6.62 TimeOut

Syntax INT WINAPI TimeOut(DevHandleT devHandle, DWORD

millisec);

devHandle refers to either an IEEE 488 interface or an

external device.

millisec is a numeric value given in milliseconds.

Returns -1 if error

Mode Any

Bus States None

Example errorcode = TimeOut(ieee,100);

Sets the timeout value to 100 msec.

See Also TimeOutQuery, Reset

The TimeOut command sets the number of milliseconds that Driver488 waits
for a transfer before declaring a timeout error. Driver488 checks for timeout
errors on every byte it transfers, except in the case of asynchronous transfers.
While the first byte of an asynchronous transfer is checked for timeout, subsequent
bytes are not. Your program must check for timely completion of an asynchronous
transfer.

Timeout checking may be suppressed by specifying a timeout value of zero
seconds, which specifies an infinite timeout. The default time out is specified in
the startup configuration, normally 10 seconds. The timeout interval may be
specified to the nearest 0.001 seconds (1 millisecond). However, due to the
limitations of the computer, the actual interval is always a multiple of 55
milliseconds and there is an uncertainty of 55 msec in the actual interval. Timeout
intervals from 1 to 110 milliseconds are rounded to 110 milliseconds. Larger
intervals are rounded to the nearest multiple of 55 msec (e.g. 165, 220, 275 msec,
etc.).

106

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.63 TimeOutQuery

Syntax INT WINAPI TimeOutQuery(DevHandleT

devHandle,DWORD millisec);

devHandle refers to either an IEEE 488 interface or an

external device.

millisec is a numeric value given in milliseconds.

Returns -1 if error

Mode Any

Bus States None

See Also TimeOut, Reset

The TimeOutQuery function queries the time out setting, given in milliseconds.

6.64 Trigger

Syntax INT WINAPI Trigger(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an

external device.

Returns -1 if error

Mode CA

Bus States With interface handle: ATN(GET

With external device handle: ATN(UNL, MTA, LAG, GET

Examples errorcode = Trigger(ieee);

Issues a Group Execute Trigger (GET) bus command to

those devices that are already in the Listen state as the

result of a previous Output or Send command

107

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

errorcode = Trigger(dmm);

Issues a Group Execute Trigger (GET) bus command to

the device specified

See Also TriggerList, Status, SendCmd

The Trigger command issues a Group Execute Trigger (GET) bus command to
the specified device. If no interface devices are specified, then the GET only
affects those devices that are already in the Listen state as a result of a previous
Output or Send command.

6.65 TriggerList

Syntax INT WINAPI TriggerList(DevHandlePT dhList);

dhList is a pointer to a list of external devices.

Returns -1 if error

Mode CA

Bus States ATN(UNL, MTA, LAG, GET

Example deviceList[0] = wave;

deviceList[1] = timer;

deviceList[2] = dmm;

deviceList[3] = NODEVICE;

errorcode = TriggerList(deviceList);

Issues a Group Execute Trigger (GET) bus command to a

list of specified devices.

See Also Trigger, SendCmd, Status

The TriggerList command issues a Group Execute Trigger (GET) bus
command to the specified devices. If no interface devices are specified, then the
GET affects those devices that are already in the Listen state as a result of a
previous Output or Send command.

108

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

6.66 UnListen

Syntax INT WINAPI UnListen (DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

UnListen command acts on the associated interface.

Returns -1 if error

Mode CA

Bus States ATN, UNL

Example errorcode = UnListen (ieee);

See Also Listen, UnTalk, SendCmd, Status

The UnListen command unaddresses an external device that was addressed to
Listen.

6.67 UnTalk

Syntax INT WINAPI UnTalk (DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle refers to an external device, the

UnTalk command acts on the associated interface.

Returns -1 if error

Mode CA

Bus States ATN, UNT

Example errorcode = UnTalk (ieee);

See Also Talk, UnListen, SendCmd, Status

109

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

The UnTalk command unaddresses an external device that was addressed to
Talk.

6.68 Wait
Driver488/W95 only

Syntax INT WINAPI Wait(DevHandleT devHandle);

devHandle refers to either an interface or an external

device. If devHandle is an external device, the Wait

command acts on the hardware interface to which the

external device is attached.

Returns -1 if error

Mode Any

Bus States Determined by previous Enter or Output command

Example errorcode = Wait(ieee);

See Also EnterX, OutputX, Buffered, Status

The Wait command causes Driver488 to wait until any asynchronous transfer
has completed before returning to your program. It can be used to guarantee that
the data has actually been received before beginning to process it, or that it has
been sent before overwriting the buffer. It is especially useful with the Enter
command, when a terminator has been specified. In that case, the amount that is
actually received is unknown, and so your program must check with Driver488 to
determine when the transfer is done. Timeout checking, if enabled, is performed
while Waiting.

110

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

7. Troubleshooting

7.1 Radio Interference Problems
Personal488 hardware systems generate, use and can radiate radio-frequency
energy, and, if not installed and not used correctly, may cause harmful
interference to radio communications. If this equipment does cause harmful
interference to radio or television reception, which you can determine by turning
the equipment off and on, we encourage you to try to correct the interference by
one or more of the following measures:

• Antenna Adjustment: Reorient or relocate the receiving antenna.

• Spatial Separation: Increase the separation between the equipment and
receiver.

• Circuit Separation: Connect the equipment to an outlet on a circuit different
from that to which the receiver is connected.

Otherwise, consult the dealer or an experienced radio/television technician for
help.

7.2 IEEE 488 Bus Errors
• Connections: Check to make sure that all of the IEEE 488 bus cables are

securely fastened to their respective terminals, and that the IEEE 488 Standard
has been met.

• Primary Addresses: Check to make sure that each of the IEEE 488 bus primary
addresses has a unique value between 0 and 30. No two interface boards or
external devices should have the same primary address within any single IEEE
488 bus system. The default IEEE 488 bus primary address is 21, but you can
change this if it conflicts with some other device.

• Timeouts: Check to make sure that the timeout period is preferred over
setting IEEE 488 bus terminators. If the timeout period elapses while waiting
to transfer data or while waiting for unspecified terminators, a time out error
occurs.

• Bus Terminators: Check to make sure that the IEEE 488 bus terminators sent
by the device and the IEEE 488 bus terminators expected by the software
driver match up. Typically, these terminators are carriage return (CR) and
line feed (LF), followed by an End-Or-Identify (EOI).

111

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

For more information on the configuration of Driver488 software settings for
IEEE 488 interfaces and external devices, see Chapter 5.

NOTE
If you make any changes to the configuration parameters—such as the
Primary Address, Timeout, and Bus Terminator—you must restart the
device driver for the changes to take effect. For Driver488/W95, close all
applications using the interface board and restart your programs. For
Driver488/WNT, you can use the following commands to restart your
device driver: net stop drvr488 and net start drvr488.

7.3 Hardware-Software Conflicts

NOTE
The following list applies only to the ISA card.

• I/O Base Address: Check to make sure that the I/O base address you selected
through the configuration utility of Driver488 matches the interrupt setting
configured through the appropriate DIP switch on your IEEE 488 interface.

• Interrupt Setting: Check to make sure that the interrupt setting selected
through the configuration utility of Driver488, matches the interrupt setting
configured through the appropriate jumper(s) and DIP switch(es) on your
IEEE 488 interface.

• Direct Memory Access (DMA) Setting: Check to make sure that the DMA
setting selected through the configuration utility of Driver488 matches the
DMA setting configured through the appropriate jumper(s) on your IEEE 488
interface.

7.4 Checking Hardware and Software Settings
Checking the Interface Board Settings

NOTE
The following applies only to the ISA card.

Remove the interface board from the computer, and refer to Chapter 4.

Checking the Driver488/W95 Software Settings

1. Open the Control Panel window from the Start > Settings menu, click on the
System icon, and select the Device Manager tab. Under the line “Ports (COM

112

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

& LPT),” look for a list of used ports. For each port, highlight the port and
click on the Properties button.

2. Properties already being used in the system are displayed under the Resources
tab. Values NOT listed are available.

For more information on the configuration of Driver488 software settings for
IEEE 488 interfaces and external devices, see Chapter 5.

Checking the Driver488/WNT Software Settings

1. From the console mode, or DOS prompt, execute the program
WINMSD.EXE.

2. When the Windows NT Diagnostic dialog box appears, you can check the
settings from the available tab displays.

For more information on the configuration of Driver488 software settings for
IEEE 488 interfaces and external devices, see Chapter 5.

113

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Appendix

A.1 IEEE 488 Bus and Serial Bus
Table A-1. IEEE 488 Bus and Serial Bus Lines.

Bus State Bus Line Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

Bus Management Lines
IFC Interface Clear

REN Remote Enable

IEEE 488 Interface: Bus Management Lines
ATN Attention ($04) 0 0 0 0 0 1 0 0

EOI End-Or-Identify ($80) 1 0 0 0 0 0 0 0

SRQ Service Request ($40) 0 1 0 0 0 0 0 0

IEEE 488 Interface: Handshake Lines
DAV Data Valid ($08) 0 0 0 0 1 0 0 0

NDAC Not Data Accepted ($10) 0 0 0 1 0 0 0 0

NRFD Not Ready For Data ($20) 0 0 1 0 0 0 0 0

Serial Interface: Bus Management Lines
DTR Data Terminal Ready ($02) 0 0 0 0 0 0 1 0

RI Ring Indicator ($10) 0 0 0 1 0 0 0 0

RTS Request To Send ($01) 0 0 0 0 0 0 0 1

Serial Interface: Handshake Lines
CTS Clear To Send ($04) 0 0 0 0 0 1 0 0

DCD Data Carrier Detect ($08) 0 0 0 0 1 0 0 0

DSR Data Set Ready ($20) 0 0 1 0 0 0 0 0

Hexadecimal and Decimal Values
Hexadecimal Value $80 $40 $20 $10 $08 $04 $02 $01

Decimal Value 128 064 032 016 008 004 002 001

114

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

A.2 IEEE 488 Bus Commands
Table A-2. IEEE 488 Bus Commands.

Bus State IEEE 488 Bus Command Data Transfer (DIO) Lines
(ATN is asserted “1”) 8 7 6 5 4 3 2 1

DCL Device Clear 0 0 0 1 0 1 0 0

GET Group Execute Trigger ($08) 0 0 0 0 1 0 0 0

GTL Go To Local ($01) 0 0 0 0 0 0 0 1

LAG Listen Address Group ($20-3F) 0 0 1 a d d r n

LLO Local Lock Out ($11) 0 0 0 1 0 0 0 1

MLA My Listen Address 0 0 1 a d d r n

MTA My Talk Address 0 1 0 a d d r n

PPC Parallel Poll Config 0 1 1 0 s P2 P1 P0

PPD Parallel Poll Disable ($07) 0 0 0 0 0 1 1 1

PPU Parallel Poll Unconfig ($60-7F) 0 0 0 1 0 1 0 1

SCG Second Command Group ($60-7F) 0 1 1 c o m m d

SDC Selected Device Clear ($04) 0 0 0 0 0 1 0 0

SPD Serial Poll Disable ($19) 0 0 0 1 1 0 0 1

SPE Serial Poll Enable ($18) 0 0 0 1 1 0 0 0

TAG Talker Address Group ($40-5F) 0 1 0 a d d r n

TCT Take Control ($09) 0 0 0 0 1 0 0 1

UNL Unlisten ($3F) 0 0 1 1 1 1 1 1

UNT Untalk ($5F) 0 1 0 1 1 1 1 1

Hexadecimal and Decimal Values
Hexadecimal Value $80 $40 $20 $10 $08 $04 $02 $01

Decimal Value 128 064 032 016 008 004 002 001

115

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

A.3 ASCII Codes

Decimal Values 00 to 31—ACG and UCG Characteristics

ASCII Control Codes (Decimal 00 to 31)
Dec Hex Character & Name Bus Message
Value Value ($)Abbreviation
Addressed Command Group (ACG)
00 $00 None/NUL Null None

01 $01 ^A/SOH Start of Header Go to Local (GTL)

02 $02 ^B/STX Start of Text None

03 $03 ^C/ETX End of Text None

04 $04 ^D/EOT End of Transmission Selected Device Clear (SDC)

05 $05 ^E/ENQ Inquiry None

06 $06 ^F/ACK Acknowledgement None

07 $07 ^G/BEL Bell Parallel Poll Disable (PPD)

08 $08 ^H/BS Backspace Group Execute Trigger (GET)

09 $09 ^I/HT Horizontal Tab Take Control (TCT)

10 $0A ^J/LF Line Feed None

11 $0B ^K/VT Vertical Tab None

12 $0C ^L/FF Form Feed None

13 $0D ^M/CR Carriage Return None

14 $0E ^N/SO Shift Out None

15 $0F ^O/SI Shift In None

Universal Command Group (UCG)
16 $10 ^P/DLE Data Link Escape None

17 $11 ^Q/DC1 Device Control 1 Local Lockout (LLO)

18 $12 ^R/DC2 Device Control 2 None

19 $13 ^S/DC3 Device Control 3 None

20 $14 ^T/DC4 Device Control 4 Device Clear (DCL)

21 $15 ^U/NAK Negative Parallel Poll Unconfig (PPU)

Acknowledgement

22 $16 ^V/SYN Synchronous Idle None

23 $17 ^W/ETB End of Transmission None

Block

24 $18 ^X/CAN Cancel Serial Poll Enable (SPE)

25 $19 ^Y/EM End of Medium Serial Poll Disable (SPD)

26 $1A ^Z/SUB Substitute None

27 $1B ^[/ESC Escape None

116

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

ASCII Control Codes (Decimal 00 to 31) (continued)
Dec Hex Character & Name Bus Message
Value Value ($)Abbreviation
Universal Command Group (UCG) (continued)
28 $1C ^\/FS File Separator None

29 $1D ^]/GS Group Separator None

30 $1E ^^/RS Record Separator None

31 $1F ^_/US Unit Separator None

NOTE
1. ASCII control codes are sometimes used to “formalize” a
communications session between communication devices.

2. DC1, DC2, DC3, DC4, FS, GS, RS, and US all have user-defined
meanings, and may vary in use between sessions or devices.

3. DC4 is often used as a general “stop transmission character.”

4. Codes used to control cursor position may be used to control print
devices, and move the print head accordingly. However, not all devices
support the full set of positioning codes.

117

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Decimal Values 00 to 31—ACG and UCG Descriptions

Dec Name Description
Addressed Command Group (ACG)
00 Null (NUL) Space filler character. Used in output timing

for some device drivers.

01 Start of Header (SOH) Marks beginning of message header.

02 Start of Text (STX) Marks beginning of data block (text).

03 End of Text (ETX) Marks end of data block (text).

04 End of Transmission (EOT) Marks end of transmission session.

05 Inquiry (ENQ) Request for identification or information.

06 Acknowledgement (ACK) “Yes” answer to questions or “ready for next

transmission.” Used in asynchronous

protocols for timing.

07 Bell (BEL) Rings bell of audible alarm on terminal.

08 Backspace (BS) Moves cursor position back one character.

09 Horizontal Tab (HT) Moves cursor position to next tab stop on

line.

10 Line Feed (LF) Moves cursor position down one line.

11 Vertical Tab (VT) Moves cursor position down to next tab line.

12 Form Feed (FF) Moves cursor position to top of next page.

13 Carriage Return (CR) Moves cursor to left margin.

14 Shift Out (SO) Next characters do not follow ASCII

definitions.

15 Shift In (SI) Next characters revert to ASCII meaning.

Universal Command Group (UCG)
16 Data Link Escape (DLE) Used to control transmissions using escape

sequences.

17 Device Control 1 (DC1) Not defined.

18 Device Control 2 (DC2) Usually user-defined.

19 Device Control 3 (DC3) Not defined. Normally used for OFF

controls.

20 Device Control 4 (DC4) Usually user-defined.

21 Negative Acknowledgement “No” answer to questions or “errors found,

(NAK) re-transmit.” Used in asynchronous

protocols for timing.

22 Synchronous Idle (SYN) Sent by asynchronous devices when idle to

insure sync.

118

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Decimal Values 00 to 31—ACG and UCG Descriptions (continued)

Dec Name Description
Universal Command Group (UCB) (continued)
23 End of Transmission Block Marks block boundaries in transmission.

(ETB)

24 Cancel (CAN) Indicates previous transmission should be

disregarded.

25 End of Medium (EM) Marks end of physical media, as in paper

tape.

26 Substitute (SUB) Used to replace a character known to be

wrong.

27 Escape (ESC) Marks beginning of an Escape control

sequence.

28 File Separator (FS) Marker for major portion of transmission.

29 Group Separator (GS) Marker for submajor portion of transmission.

30 Record Separator (RS) Marker for minor portion of transmission.

31 Unit Separator (US) Marker for most minor portion of

transmission.

NOTE
1. ASCII control codes are sometimes used to “formalize” a
communications session between communication devices.

2. DC1, DC2, DC3, DC4, FS, GS, RS, and US all have user-defined
meanings, and may vary in use between sessions or devices.

3. DC4 is often used as a general “stop transmission character.”

4. Codes used to control cursor position may be used to control print
devices, and move the print head accordingly. However, not all devices
support the full set of positioning codes.

119

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Decimal Values 32 to 63—LAG

Dec Hex Character Name Bus Message
Listen Address Group (LAG)
32 $20 <space> Space Bus address 00

33 $21 ! Exclamation Point Bus address 01

34 $22 " Quotation Mark Bus address 02

35 $23 # Number Sign Bus address 03

36 $24 $ Dollar Sign Bus address 04

37 $25 % Percent Sign Bus address 05

38 $26 & Ampersand Bus address 06

39 $27 ' Apostrophe Bus address 07

40 $28 (Opening parenthesis Bus address 08

41 $29) Closing parenthesis Bus address 09

42 $2A * Asterisk Bus address 10

43 $2B + Plus Sign Bus address 11

44 $2C , Comma Bus address 12

45 $2D - Hyphen or Minus Bus address 13

sign

46 $2E . Period Bus address 14

47 $2F / Slash Bus address 15

48 $30 0 Zero Bus address 16

49 $31 1 One Bus address 17

50 $32 2 Two Bus address 18

51 $33 3 Three Bus address 19

52 $34 4 Four Bus address 20

53 $35 5 Five Bus address 21

54 $36 6 Six Bus address 22

55 $37 7 Seven Bus address 23

56 $38 8 Eight Bus address 24

57 $39 9 Nine Bus address 25

58 $3A : Colon Bus address 26

59 $3B ; Semicolon Bus address 27

60 $3C < Less Than Sign Bus address 28

61 $3D = Equal Sign Bus address 29

62 $3E > Greater Than Sign Bus address 30

63 $3F ? Question Mark Unlisten (UNL)

120

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Decimal Values 64 to 95—TAG

Dec Hex Character Name Bus Message
Talk Address Group (TAG)
64 $40 @ At sign Bus address 00

65 $41 A Capital A Bus address 01

66 $42 B Capital B Bus address 02

67 $43 C Capital C Bus address 03

68 $44 D Capital D Bus address 04

69 $45 E Capital E Bus address 05

70 $46 F Capital F Bus address 06

71 $47 G Capital G Bus address 07

72 $48 H Capital H Bus address 08

73 $49 I Capital I Bus address 09

74 $4A J Capital J Bus address 10

75 $4B K Capital K Bus address 11

76 $4C L Capital L Bus address 12

77 $4D M Capital M Bus address 13

78 $4E N Capital N Bus address 14

79 $4F O Capital O Bus address 15

80 $50 P Capital P Bus address 16

81 $51 Q Capital Q Bus address 17

82 $52 R Capital R Bus address 18

83 $53 S Capital S Bus address 19

84 $54 T Capital T Bus address 20

85 $55 U Capital U Bus address 21

86 $56 V Capital V Bus address 22

87 $57 W Capital W Bus address 23

88 $58 X Capital X Bus address 24

89 $59 Y Capital Y Bus address 25

90 $5A Z Capital Z Bus address 26

91 $5B [Opening Bracket Bus address 27

92 $5C \ Backward Slash Bus address 28

93 $5D] Closing Bracket Bus address 29

94 $5E ^ Caret Bus address 30

95 $5F _ Underscore Untalk (UNT)

121

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Decimal Values 96 to 127—SCG

Dec Hex Character Name Bus Message
Secondary Command Group (SCG)
96 $60 ' Grave Command 00

97 $61 a Lowercase A Command 01

98 $62 b Lowercase B Command 02

99 $63 c Lowercase C Command 03

100 $64 d Lowercase D Command 04

101 $65 e Lowercase E Command 05

102 $66 f Lowercase F Command 06

103 $67 g Lowercase G Command 07

104 $68 h Lowercase H Command 08

105 $69 i Lowercase I Command 09

106 $6A j Lowercase J Command 10

107 $6B k Lowercase K Command 11

108 $6C l Lowercase L Command 12

109 $6D m Lowercase M Command 13

110 $6E n Lowercase N Command 14

111 $6F o Lowercase O Command 15

112 $70 p Lowercase P Command 16

113 $71 q Lowercase Q Command 17

114 $72 r Lowercase R Command 18

115 $73 s Lowercase S Command 19

116 $74 t Lowercase T Command 20

117 $75 u Lowercase U Command 21

118 $76 v Lowercase V Command 22

119 $77 w Lowercase W Command 23

120 $78 x Lowercase X Command 24

121 $79 y Lowercase Y Command 25

122 $7A z Lowercase Z Command 26

123 $7B { Opening Brace Command 27

124 $7C | Vertical Line Command 28

125 $7D } Closing Brace Command 29

126 $7E ~ Tilde Command 30

127 $7F DEL Delete Command 31

122

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Abbreviations
*CA: Not Controller Active mode.

*SC: Not System Controller mode.

A/D: Analog-to-Digital.

ACG: Addressed Command Group.

ACK: Acknowledgement (ASCII code).

ADC: Analog-to-Digital Converter.

API: Application Program Interface.

ASCII: American Standard Code for Information Interchange.

ATN: Attention line.

BEL: Bell (ASCII code).

BS: Backspace (ASCII code).

CA: Controller Active mode.

CAN: Cancel (ASCII code).

CCL: Character Command Language.

CJC: Cold Junction Compensation.

CMD: Bus Command interpretation.

CR: Carriage Return (ASCII code).

CSR: Calibration Status Register.

CTS: Clear To Send line.

DAV: Data Valid line.

DC1: Device Control 1 (ASCII code).

DC2: Device Control 2 (ASCII code).

123

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

DC3: Device Control 3 (ASCII code).

DC4: Device Control 4 (ASCII code).

DCD: Data Carrier Detect line.

DCL: Device Clear bus command.

DDE: Dynamic Data Exchange.

DEL: Delete (ASCII code).

DIO: Data Transfer (I/O line).

DLE: Data Link Escape (ASCII code).

DLL: Dynamic Link Library.

DMA: Direct Memory Access.

DMM: Digital Multimeter.

DSR: Data Set Ready line.

DTR: Data Terminal Ready line.

EEPROM: Electronically Erasable Programmable Read-Only Memory.

EM: End of Medium (ASCII code).

ENQ: Inquiry (ASCII code).

EOI: End-Or-Identify line.

EOL: End-Of-Line character.

EOT: End of Transmission (ASCII code).

EPROM: Erasable Programmable Read-Only Memory.

ESB: Event Status Register bit.

ETX: End of Text (ASCII code).

FCC: Federal Communications Commission.

124

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

FF: Form Feed (ASCII code).

FS: File Separator (ASCII code).

GET: Group Execute Trigger bus command.

GPIB: General Purpose Interface Bus.

GS: Group Separator (ASCII code).

GTL: Go To Local bus command.

GUI: Graphical User Interface.

H/W: Hardware.

HT: Horizontal Tab (ASCII code).

IDDC: Invalid Device Dependent Command.

IDDCO: Invalid Device Dependent Command Option.

IEEE: Institute of Electrical and Electronic Engineers.

IFC: Interface Clear line.

IOCTL: Input/Output Control.

ISA: Industry Standard Architecture bus.

ISR: Interrupt Service Routine.

IST: Bus Device Individual Status.

LAG: Listen Address Group bus command.

LED: Light-Emitting Diode.

LF: Line Feed (ASCII code).

LLO: Local Lock Out bus command.

LSB: Least Significant Bit.

MAV: Message Available bit.

125

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

MLA: My Listen Address.

MSB: Most Significant Bit.

MSS: Master Summary Status bit.

MTA: My Talk Address.

N/U: Not used.

NAK: Negative Acknowledgement (ASCII code).

NDAC: Not Data Accepted line.

NRFD: Not Ready For Data line.

NUL: Null (ASCII code).

NV-RAM: Non-Volatile Random-Access Memory.

PCI: Peripheral Component Interconnect bus.

PPC: Parallel Poll Configure bus command.

PPD: Parallel Poll Disable bus command.

PPU: Parallel Poll Unconfig bus command.

RAM: Random-Access Memory.

REN: Remote Enable line.

RI: Ring Indicator line.

RMS: Root Mean Square.

RQS: Request for Service bit.

RTD: Resistance Temperature Device.

RTS: Request To Send line.

SC: System Controller mode.

SCG: Secondary Command Group.

126

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

SCFI: Standard Commands for Programmable Instruments.

SCSI: Small Computer System Interface bus.

SDC: Selected Device Clear bus command.

SI: Shift In (ASCII code).

SO: Shift Out (ASCII code).

SOH: Start of Header (ASCII code).

SPD: Serial Poll Disable bus command.

SPE: Serial Poll Enable bus command.

SRE: Service Request Enable Register.

SRQ: Service Request Line.

STB: Status Byte Register.

STX: Start of Text (ASCII code).

SUB: Substitute (ASCII code).

SYN: Synchronous Idle (ASCII code).

T/C: Thermocouple.

TAG: Talk Address Group bus command.

TCT: Take Control bus command.

TTL: Transistor-Transistor Logic.

UCG: Universal Command Group.

UNL: Unlisten bus command.

UNT: Untalk bus command.

US: Unit Separator (ASCII code).

VDM: Virtual DOS Machine.

VT: Vertical Tab (ASCII code).

127

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Index
16-bit slot . 18, 19
32-bit expansion slot . 21
8-bit slot . 19

A
AC power . 12
Add New Hardware . 22, 29
Add New Hardware Wizard . 22, 23
Add/Remove Programs . 35
ASCIICodes . 115
ASCIIControl Codes . 116
AT-class machine . 18, 19
AT-style interrupt-sharing . 18
auxiliary registers . 16

B
BIOS . 30, 31, 32, 36, 37

C
card-edge receptacle . 19
Change Setting button . 27
Change SystemResources dialog box 34
COM . 14
Control Panel . 22, 26

D
DACK . 15, 18
Data Transfer→Output Commands→Enter 31
Data Transfer→Output Commands→Output 31, 36
Desktop Start button . 26
Device Manager . 25, 26, 27
Device Manager tab . 14
Device→MakeNew Device . 31
Device→MakeNewDevice . 36
DIP-switch settings . 13
DIPswitches . 35
Direct Memory Access (DMA) 14, 15, 18, 111
DMA . 15, 18, 31, 32, 37
DMA channel . 16, 19
driver disk . 24
Driver488 . 111

128

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

Driver488 software . 10, 13
Driver488/W95 . 7
Driver488/W95 Driver Disk . 21
Driver488/W95 Software Settings 111
Driver488/WNT . 7
Driver488/WNT Software Settings 112
DRQ . 15, 18

F
factory default . 16
floppy controller . 19

H
hardware installation . 12, 20
Hardware-Software Conflicts . 111

I
I/O address . 14, 15, 16, 18
I/O base address . 15, 16
I/O Base Address . 111
IEEE 488 . 10, 12, 13, 14, 19, 111
IEEE 488 bus cables . 110
IEEE 488 Bus Errors . 110
IEEE 488 controller chip . 16
IEEE 488 port connector . 12, 20
IEEE 488.2 . 7, 9
IEEE488 bus . 8
IEEE488 Bus and Serial Bus . 113
IEEE488 Bus Commands . 114
IEEE488 Software Development Disk 30
IEEE488-related .inf file . 28
IEEE488.2 . 27
IEEEController hardware . 29
Input/Output (I/O) address 15, 16
Interrupt (IRQ) . 15, 17, 18
interrupt level . 16
Interrupt Setting . 111
IRQ . 14, 15, 17
ISA . 13, 15, 17, 18, 19, 21, 28, 35
ISA expansion slots . 11, 19
ISA-bus expansion slot . 20
ISAcard . 21

129

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

J
jumpers . 35

L
local bus . 7
LPT . 14

M
Manufacturer/Models dialog box 24
multi-tasking . 9
My Computer . 30

P
PC-bus compatible . 11, 19
PC/XTbus 1 . 8
PCI . 10, 21
PCI expansion slots . 11, 19
PCI slot . 12
PCIcard . 21
peripheral settings . 31
Personal 488/PCI . 27
Personal488/AT . 21
Personal488/AT (the Personal 488 ISACard) 27
Personal488/NT disk 1 . 32
Personal488/PCI . 21
Plug and Play and “Legacy” Devices 32
plug-and-play . 7, 10
precautions for static-electricity discharge 19

Q
Query→CheckListener . 31, 36

R
Resources tab . 27

S
SW1 . 15
SW2 . 15, 17
System Resources . 34

T
terminators . 31

130

PERSONAL 488 ISA CARD, PERSONAL 488 PCI CARD

W
Windows 95 or 98 . 7, 9, 10, 13, 21, 22, 28
Windows 95 or 98 software development kit 10, 13
Windows 95/98 Driver Installation/Removal 28
Windows Explorer . 30
Windows NT . 7, 9, 10, 13, 21, 32, 34
Windows NTService Packet 3 (SP3)

Driver Installation/Removal 34

1000 Park Drive • Lawrence, PA 15055-1018 • 724-746-5500 • Fax 724-746-0746

© Copyright 1999. Black Box Corporation. All rights reserved.

